精英家教网 > 高中数学 > 题目详情

【题目】某企业为了解年广告费(单位:万元)对年销售额(单位:万元)的影响,对近4年的年广告费和年销售额的数据作了初步整理,得到下面的表格:

年广告费/万元

2

3

4

5

年销售额/万元

26

39

49

54

(1)用年广告费作解释变量,年销售额作预报变量,在所给坐标系中作出这些数据的散点图,并判断哪一个更适合作为年销售额关于年广告费的回归方程类型(给出判断即可,不必说明理由).

(2)根据(1)的判断结果及表中数据,建立关于的回归方程.

(3)已知商品的年利润的关系为.根据(2)的结果,计算年广告费约为何值时(小数点后保留两位),年利润的预报值最大.附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为.

【答案】(1)见解析;(2)(3)6.65万元

【解析】

1)根据题中所给的数据画出散点图,可以发现点落在一条直线的周围,从而判断出更适合作为年销售额关于年广告费的回归方程类型;

2)根据数据,利用公式求得回归直线的方程;

3)根据题意,将相应的量代换,求得结果.

(1)散点图如图所示,

更适合作为年销售额关于年广告费的回归方程类型.

(2)

所以回归方程为.

(3)由(2)可知年利润的预报值为

,则

可得

故当

(万元)时,年利润的预报值最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列三种说法:

①命题p:x0∈R,tan x0=1,命题q:x∈R,x2-x+1>0,则命题“p∧()”是假命题.

②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是=-3.

③命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”.

其中所有正确说法的序号为________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数的图象,需对函数的图象所作的变换可以为( )

A. 先将图象上所有点的横坐标压缩为原来的,纵坐标不变,再向右平移个单位

B. 先向左平移个单位,再将图象上所有点的横坐标压缩为原来的,纵坐标不变

C. 先向左平移个单位,再将图象上所有点的横坐标压缩为原来的,纵坐标不变

D. 先向右平移个单位,再将图象上所有点的横坐标伸长为原来的3倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为坐标原点,为椭圆的左焦点,离心率为,直线与椭圆相交于两点.

(1)求椭圆的方程;

(2)若是弦的中点,是椭圆上一点,求的面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,四棱锥中,底面,面是直角梯形,为侧棱上一点.该四棱锥的俯视图和侧(左)视图如图2所示.

1)证明:平面

2)线段上是否存在点,使所成角的余弦值为?若存在,找到所有符合要求的点,并求的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且经过点

1)求椭圆的方程;

2)是否存在经过点的直线,它与椭圆相交于两个不同点,且满足为坐标原点)关系的点也在椭圆上,如果存在,求出直线的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设某种设备使用的年限(年)与所支出的维修费用(万元)有以下统计资料:

使用年限

2

3

4

5

6

维修费用

2

4

5

6

7

若由资料知呈线性相关关系.试求:

1)求

2)线性回归方程

3)估计使用10年时,维修费用是多少?

附:利用最小二乘法计算的值时,可根据以下公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为,作平面与底面不平行与棱分别交于EFGH,记EAFBGCHD分别为,若,则多面体EFGHABCD的体积为  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在其定义域上恰有两个零点,则正实数a的值为_____.

查看答案和解析>>

同步练习册答案