精英家教网 > 高中数学 > 题目详情
18.已知等差数列{an}的首项为a,公差为b,且不等式ax2-3x+2>0的解集为{x|x<1或x>b}.
(1)求数列{an}的通项公式;
(2)求数列{3n•an}的前n项和.

分析 (1)由题意求出a,b的值,然后直接由等差数列的通项公式得答案;
(2)把数列{an}的通项公式代入{3n•an},然后利用错位相减法求数列{3n•an}的前n项和.

解答 (1)∵ax2-3x+2>0的解集为(-∞,1)∪(b,+∞),根据不等式解集的意义,
可知:方程ax2-3x+2=0的两根为x1=1、x2=b.
利用韦达定理求得a=1,b=2.
由此知an=1+2(n-1)=2n-1;
(2)由(1)可得:bn=(2n-1)•3n
∴Tn=b1+b2+…+bn=1•3+3•32+…+(2n-1)•3n
3Tn=1•32+3•33+…+(2n-3)•3n+(2n-1)•3n+1
由①-②得:-2Tn=2(32+33+…+3n)-(2n-1)•3n+1+3
=$2•\frac{9(1-{3}^{n-1})}{1-3}-(2n-1)•{3}^{n+1}+3$=(2-2n)•3n+1-6,
∴${T}_{n}=(n-1)•{3}^{n+1}+3$.

点评 本题考查了等差数列的通项公式,考查了错位相减法求数列的和,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知(3x-1)2009=a0x2009+a1x2008+a2x2007+…+a2009
(1)求a0+a1+a2+…+a2009
(2)求|a0|+|a1|+|a2|+…+|a2009|的值;
(3)求a1+a3+a5+…+a2009的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在数列{an}中,a1=1,an+1=(1+$\frac{1}{n}$)an+$\frac{n+1}{{2}^{n}}$,求an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合A的元素都为正整数,满足若a∈A,则9-a∈A,那么这样的集合A共有15个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知$\frac{cos(π-2A)}{sin(A-\frac{π}{4})}$=-$\frac{\sqrt{2}}{2}$(0<A<π),则sinA+cosA=$\frac{1}{2}$,cos2A=$-\frac{\sqrt{7}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}满足:a1=6,an-1•an-6an-1+9=0,n∈N*且n≥2.
(1)求证:数列{$\frac{1}{{a}_{n}-3}$}为等差数列;
(2)求数列{an}的通项公式;
(3)设bn=$\frac{{a}_{n}}{(n+1)^{2}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设曲线f(x)=ex(其中e为自然对数的底数)在点(0,1)处的切线与直线y=-x+4和x轴所围成的区域为D(包含边界),点P(x,y)为区域D内的动点,若z=x-2y+a的最大值为8,则实数a的值为(  )
A.$\frac{9}{2}$B.4C.10D.$\frac{23}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,底面ABCD中是正方形,侧面PAB⊥底面ABCD中,PA=AB,点E是PB的中点,点F在边BC上移动.
(Ⅰ)若F为BC中点,求证:EF∥平面PAC;
(Ⅱ)求证:AE⊥PF;
(Ⅲ)若PB=$\sqrt{2}$AB,二面角E-AF-B的余弦值等于$\frac{\sqrt{11}}{11}$,试判断点F在边BC上的位置,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC中,∠A、B、C所对的边分别为a、b、c,tanC=$\frac{\sqrt{3}cosB+sinB}{\sqrt{3}sinB-cosB}$
(1)求A;
(2)若b=5,△ABC面积为15$\sqrt{3}$,求$\overrightarrow{CA}$•$\overrightarrow{CB}$.

查看答案和解析>>

同步练习册答案