精英家教网 > 高中数学 > 题目详情
3.设n为给定的正整数.记An={x|2n<x<2n+1,且x=3m,m∈N}
(1)当n为奇数时.求An中的最大数和最小数;
(2)求An中所有元素之和.

分析 (1)根据题意,当n为奇数时,有2n+1=3(2n-1-2n-2+…-2+1),问题得以解决.
(2)分n为奇数和偶数两种情况,根据等差数列的前n项和公式即可求出答案.

解答 解:(1)当n为奇数时,有2n+1=(2+1)(2n-1-2n-2+…-2+1)=3(2n-1-2n-2+…-2+1),
所以2n+1是最小的数;
又2n+1-1=(2n+1+2)-3=2(2n+1)-3,
所以2n+1-1是最大的数.
(2)由(1)知当n为奇数时,An中的各个元素组成以2n+1为首项,3为公差的等差数列,设项数为m,则2n+1-1=2n+1+3(m-1),
所以m=$\frac{{2}^{n}+1}{3}$,
所以当n是奇数时,An中的所有元素之和为$\frac{1}{2}$[2n+1)+(2n+1-1)]$\frac{{2}^{n}+1}{3}$=22n-1+2n-1
当n为偶数时,n-1时奇数,由(1)可知2n-1+1是3的倍数,因此2n+2=2(2n-1+1)是3的倍数;
同理,2n+1-2=2(2n-1)是3的倍数,
所以当n为偶数时,An中的各个元素组成以2n+2为首项,3为公差的等差数列,
设项数为m,则2n+1-2=2n+2+3(m-1),所以m=$\frac{{2}^{n}-1}{3}$,
所以当n是偶数时,An中的所有元素之和为$\frac{1}{2}$[2n+2)+(2n+1-2)]$\frac{{2}^{n}-1}{3}$=22n-1-2n-1

点评 本体主要考查了等差数列的前n项和公式,以及分类讨论的思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.绵阳市某高中的5名高三学生计划在高考结束后到北京、上海、杭州、广州等4个城市去旅游,要求每个城市都要有学生去,每个学生只去一个城市旅游,且学生甲不到北京,则不同的出行安排有(  )
A.180种B.72种C.216种D.204种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设数列{an}是公比小于1的正项等比数列,Sn为数列{an}的前n项和,已知S3=14,且a1+13,4a2,a3+9成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=an•(n+2-λ),且数列{bn}是单调递减数列,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,程序输出的结果S=132,则判断框中应填(  )
A.i≥10?B.i≥11?C.i≤11?D.i≥12?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.用0,1,2,3,4,5这6个数字可以组成没有重复数字的四位数.求:
(1)四个数字之和为偶数的四位数的个数;
(2)组成的四位数的奇数的个数;
(4)组成的大于2310的四位数的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}中,a1=1,前n项和为Sn
(1)如果数列{an}为等差数列,且对一切正整数n,满足$\frac{{S}_{2n}}{{S}_{n}}$=$\frac{4n+2}{n+1}$,求数列{an}的通项公式;
(2)如果数列{an}对一切正整数n,满足$\frac{{S}_{n+1}}{{S}_{n}}$=$\frac{n+2}{n}$,求数列{an}的通项公式;
(3)若数列{an}满足an+1=3an+1,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.利用二项式定理证明:49n+16n-1(n∈N*)能被16整除.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和为Sn,对任意n∈N*,点(n,Sn)都在函数f(x)=2x2-x的图象上.
(1)求数列{an}的通项公式;
(2)设bn=${2}^{\frac{{a}_{n}+1}{2}}$,求log2(b1•b2•b3•b4•b5)的值及{bn}的前n项和Bn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.经调查统计,网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的A,B,C三种商品有购买意向.该淘宝小店推出买一件送5元优惠券的活动.已知某网民购买A,B,C商品的概率分别为$\frac{2}{3}$,P1,P2(P1<P2),至少购买一件的概率为$\frac{23}{24}$,最多购买两件种商品的概率为$\frac{3}{4}$.假设该网民是否购买这三种商品相互独立.
(1)求该网民分别购买A,B两种商品的概率;
(2)用随机变量X表示该网民购买商品所享受的优惠券钱数,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案