精英家教网 > 高中数学 > 题目详情
11.已知P为椭圆$\frac{{x}^{2}}{4}$+y2=1的左顶点,如果存在过点M(x0,0),(x0>0)的直线交椭圆于A,B两点,S△AOB=2S△AOP,则x0的取值范围为(1,2).

分析 如图所示,设直线AB的方程为:ty=x-x0,A(x1,y1),B(x2,y2),与椭圆方程联立化为(4+t2)y2-2tx0y+x02-4=0.△>0.由于S△AOP=$\frac{1}{2}$|OP|•y1=y1,S△AOB=$\frac{1}{2}$x0|y1-y2|.S△AOB=2S△AOP,可得2y1=$\frac{1}{2}$x0|y1-y2|,再利用根与系数的关系可得:t2=$\frac{{{x}_{0}}^{4}-4{{x}_{0}}^{3}+16{x}_{0}-16}{4(1-{x}_{0})}$.令m=x0,f(m)=m4-4m3+16m-16,(m∈(0,2)),利用导数研究其单调性即可得出.

解答 解:如图所示,
设直线AB的方程为:ty=x-x0,A(x1,y1),B(x2,y2),
(y1>y2,y1>0).
联立 $\left\{\begin{array}{l}{ty=x-{x}_{0}}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,
化为(4+t2)y2-2tx0y+x02-4=0.
∴△=4t2x02-4(4+t2)(x02-4)>0,
∴y1+y2=$\frac{2t{x}_{0}}{4+{t}^{2}}$,①
y1y2=$\frac{{{x}_{0}}^{2}-4}{4+{t}^{2}}$,②
S△AOP=$\frac{1}{2}$|OP|•y1=y1,S△AOB=$\frac{1}{2}$x0|y1-y2|.
∵S△AOB=2S△AOP
∴2y1=$\frac{1}{2}$x0|y1-y2|.
化为y2=(1-$\frac{4}{{x}_{0}}$)y1,代入①可得:y1=$\frac{2t{{x}_{0}}^{2}}{(2{x}_{0}-4)(4+{t}^{2})}$,
∴y2=$\frac{2t{x}_{0}({x}_{0}-4)}{(2{x}_{0}-4)(4+{t}^{2})}$,
∴$\frac{2t{{x}_{0}}^{2}}{(2{x}_{0}-4)(4+{t}^{2})}$•$\frac{2t{x}_{0}({x}_{0}-4)}{(2{x}_{0}-4)(4+{t}^{2})}$=$\frac{{{x}_{0}}^{2}-4}{4+{t}^{2}}$,
化为t2=$\frac{{{x}_{0}}^{4}-4{{x}_{0}}^{3}+16{x}_{0}-16}{4(1-{x}_{0})}$.(*)
令m=x0,f(m)=m4-4m3+16m-16,(m∈(0,2)),
f′(m)=4m3-12m2+16=4(m-2)2(m+1),
∴函数f(m)在m∈(0,2)单调递增,
又f(0)=-16,f(1)=-3,f(2)=0,
因此要使(*)有解,则1<m<2,
即x0∈(1,2).
故答案为:(1,2).

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、三角形面积计算公式、利用导数研究函数的单调性,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在△PAB中,已知点$A({-\sqrt{6},0})$、B($\sqrt{6}$,0),动点P满足|PA|=|PB|+4.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)设M(-2,0),N(2,0),过点N作直线l垂直于AB,且l与直线MP交于点Q,设点Q关于x轴的对称点为R,求证:$\overrightarrow{OP}•\overrightarrow{OR}$为定值;
(Ⅲ)在(II)的条件下,试问x轴上是否存在定点T,使得PN⊥QT.若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}、{bn}中,对任何正整数n都有:a1bn+a2bn-1+a3bn-2…+an-1b2+anb1=2n+1-n-2.
(1)若数列{an}是首项和公差都是1的等差数列,求b1,b2,并证明数列{bn}是等比数列;
(2)若数列{bn}是等比数列,数列{an}是否是等差数列,若是请求出通项公式,若不是请说明理由;
(3)若数列{an}是等差数列,数列{bn}是等比数列,求证:$\frac{1}{{a}_{1}{b}_{1}}$+$\frac{1}{{a}_{2}{b}_{2}}$+…+$\frac{1}{{a}_{n}{b}_{n}}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图是三棱柱被平面截去一部分后剩余的几何体的三视图,则截掉的几何体与三视图所示的几何体的体积之比为1:2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,AB是圆O的直径,C是圆O上异于A,B的一个动点,DC垂直于圆O所在的平面,DC∥EB,DC=EB=1,AB=4.
(Ⅰ)求证:DE⊥平面ACD;
(Ⅱ)当三棱锥C-ADE体积最大时,求平面AED与平面ABE所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若框图所给的程序运行结果为S=90.那么判断框中应填入后的条件是(  )
A.k=9B.k≤8C.k<8D.k>8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知A、B分别为曲线C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>0)与x轴的左、右两个交点,直线l过点B且与x轴垂直,P为l上异于点B的点,连结AP与曲线C交于点M.
(1)若曲线C为圆,且|BP|=$\frac{2\sqrt{3}}{3}$,求弦AM的长;
(2)设N是以BP为直径的圆与线段BM的交点,若O、N、P三点共线,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的首项a1=1,an+1=$\frac{3{a}_{n}}{{a}_{n}+1}$,n∈N+
(Ⅰ)证明:数列{$\frac{1}{{a}_{n}}-\frac{1}{2}$}是等比数列;
(Ⅱ)求数列{$\frac{2n}{{a}_{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,已知点S(0,3),过点S作直线SM,SN与圆Q:x2+y2-2y=0和抛物线C:x2=-2py(p>0)都相切.
(1)求抛物线C和两切线的方程;
(2)设抛物线的焦点为F,过点P(0,-2)的直线与抛物线相交于A,B两点,与抛物线的准线交于点C(其中点B靠近点C),且|AF|=5,求△BCF与△ACF的面积之比.

查看答案和解析>>

同步练习册答案