精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3
-4x+m在区间(-∞,+∞)上有极大值
28
3

(1)求实常数m的值.
(2)求函数f(x)在区间(-∞,+∞)上的极小值.
考点:利用导数研究函数的极值,利用导数研究函数的单调性
专题:导数的综合应用
分析:(1)由f′(x)=x2-4=(x+2)(x-2),令f′(x)=0,解得x=-2,或x=2,列表讨论,能求出m=4.
(2)由m=4,得f(x)=
1
3
x3-4x+4
,由此能求出函数f(x)在区间(-∞,+∞)上的极小值.
解答: 解:(1)∵f(x)=
1
3
x3
-4x+m,
∴f′(x)=x2-4=(x+2)(x-2),
令f′(x)=0,解得x=-2,或x=2,
列表讨论,得:
 x (-∞,-2)-2 (-2,2) 2(2,+∞)
 f′(x)+ 0-0+
 f(x) 极大值 极小值
∴当x=-2时,f(x)取极大值,
∵函数f(x)=
1
3
x3
-4x+m在区间(-∞,+∞)上有极大值
28
3

f(-2)=
8
3
+8+m=
28
3

解得m=4.
(2)由m=4,得f(x)=
1
3
x3-4x+4

当x=2时,f(x)取极小值f(2)=-
4
3
点评:本题考查函数的极大值和极小值的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=2sin(2x-
π
3
).
(1)求函数y=f(x)的单调递减区间;
(2)若函数y=f(x+θ)(0<θ<
π
2
)为偶函数,求θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图空间四边形ABCD,E、F、G、H分别为AB、AD、CB、CD的中点且AC=BD,AC⊥BD,试判断四边形EFGH的形状,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+bx-alnx.
(Ⅰ)若x=2是函数f(x)的极值点,1是函数f(x)的零点,求a,b.
(Ⅱ)对?b∈[-2,-1],都有?x∈(1,e)(e为自然对数的底数),使得f(x)<0成立.求实数a的取值范围.
(Ⅲ)若a=-1时,函数f(x)有两个极值点x1,x2,且x1∈(0,
1
2
)求证:f(x1)-f(x2)>
3
4
-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是定义在(-∞,+∞)上的奇函数,且当x>0,f(x)=2x(1-x),求:
(1)f(-2)的值;
(2)当x<0时,函数的解析式;
(3)求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两名射击运动员参加某项有奖射击活动(射击次数相同).已知两名运动员射击的环数都稳定在7,8,9,10环,他们射击成绩的条形图如下:

(I)求乙运动员击中8环的概率,并求甲、乙同时击中9环以上(包括9环)的概率.
(Ⅱ)甲、乙两名运动员现在要同时射击4次,如果甲、乙同时击中9环以上(包括9环)3次时,可获得总奖金两万元;如果甲、乙同时击中9环以上(包括9环)4次时,可获得总奖金五万元,其他结果不予奖励.求甲、乙两名运动员可获得总奖金数的期望值.(注:频率可近似看作概率)

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学共有1000名学生参加了该地区高三第一次质量检测的数学考试,成绩如下表:
成绩分组[0,30)[30,60)[60,90)[90,120)[120,150)
人   数6090300x160
(1)为了了解同学们的具体情况,学校将采取分层抽样的方法,抽取100名同学进行问卷调查,甲同学在本次测试中成绩为95分,求他被抽中的概率.
(2)本次数学成绩的优秀成绩为110分,试估计该中学达到优秀成绩的人数.
(3)绘制频率分布直方图,并据此估计该校本次考试的数学平均成绩及中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知lg(x+2y)=lgx+lgy,则3x+4y的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2log 
1
2
x的定义域为[
2
2
2
],则函数f(x)的值域是
 

查看答案和解析>>

同步练习册答案