分析 根据排列数的公式,写出算式,通过乘除运算,得到结果.
解答 解:∵要使${A}_{2n}^{11-n}{+A}_{n+4}^{2n}$有意义,则必有$\left\{\begin{array}{l}{2n≥11-n}\\{n+4≥2n}\end{array}\right.$,解得整数n=4,
∴${A}_{2n}^{11-n}{+A}_{n+4}^{2n}$=${{A}_{8}}^{7}+{{A}_{8}}^{8}$=2×8!=80640.
故答案为:80640.
点评 本题是排列和组合数的运算,根据排列和组合的公式,写出算式,通过乘除运算,得到结果,这类问题有一大部分是考查排列和组合的性质的,本题是一个简单的运算.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 日期 | 1月1日 | 2月28日 | 3月21日 | 4月27日 | 5月6日 | 6月21日 | 8月13日 | 9月20日 | 10月25日 | 12月21日 |
| 日期位置序号x | 1 | 59 | 80 | 117 | 126 | 172 | 225 | 268 | 298 | 355 |
| 白昼时间y(小时) | 5.6 | 10.2 | 12.4 | 16.4 | 17.3 | 19.4 | 16.4 | 12.4 | 8.5 | 5.4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com