精英家教网 > 高中数学 > 题目详情
15.设m是正整数,试证明等式:${∫}_{-π}^{π}$sinmxdx=0.

分析 求出被积函数的原函数,分别代入积分上限和积分下限后作差得答案.

解答 证明::${∫}_{-π}^{π}$sinmxdx=$-\frac{1}{m}cosmx{|}_{-π}^{π}$=$-\frac{1}{m}cosmπ$$-[-\frac{1}{m}cos(-mπ)]$
=$-\frac{1}{m}cosmπ+\frac{1}{m}cosmπ=0$.

点评 本题考查了定积分,考查了简单的复合函数的求导,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知幂函数f(x)图象过点(-$\frac{1}{2}$,-2),数列{an},{bn}满足a1=1,b1=1,且对任意n∈N+,均有an+1=$\frac{{a}_{n}f({a}_{n})}{f({a}_{n})+3}$,bn+1-bn=$\frac{1}{{a}_{n}}$.
(1)求函数f(x)的解析式;
(2)试求数列{an},{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.${A}_{2n}^{11-n}{+A}_{n+4}^{2n}$=80640.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知t为常数,且0<t<1,函数g(x)=$\frac{1}{2}$(x+$\frac{1-t}{x}$)(x>0)最小值和函数h(x)=$\sqrt{{x}^{2}-2x+2+t}$的最小值都是函数f(x)=-x3+ax2+bx(a,b∈R)的零点.
(1)用含a的式子表示b,并求出a的取值范围;
(2)求函数f(x)在区间[1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,AD=CD=2AB=2PA=4,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点.
(1)求证:PA⊥底面ABCD;
(2)求△BEF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求函数y=1-$\sqrt{1-{x}^{2}}$(-1<x<0)的反函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知△ABC的面积是S,且$\overrightarrow{AB}•\overrightarrow{AC}$=$\sqrt{2}$S.
(1)求sinA的值;
(2)若|$\overrightarrow{AB}$|=3,|$\overrightarrow{AB}-\overrightarrow{AC}$|=2$\sqrt{3}$,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,已知向量$\overrightarrow{m}$=(a,btanA),$\overrightarrow{n}$=(b,atanB),若$\overrightarrow{m}$∥$\overrightarrow{n}$,试判定△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax2-2x+a,a∈R.
(1)当a=-$\frac{1}{2}$时,求函数y=$\sqrt{f(x)}$的值域;
(2)若存在m>0.使关于x的方程f(|x|)=m+$\frac{1}{m}$有四个不同的实根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案