精英家教网 > 高中数学 > 题目详情
1.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{c}$|=1,且满足3$\overrightarrow{a}$$+m\overrightarrow{b}$$+7\overrightarrow{c}$=$\overrightarrow{0}$,其中$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则实数m=5或-8.

分析 用$\overrightarrow{a},\overrightarrow{b}$表示出$\overrightarrow{c}$,两边平方得到关于m的方程.

解答 解:∵3$\overrightarrow{a}$$+m\overrightarrow{b}$$+7\overrightarrow{c}$=$\overrightarrow{0}$,∴-7$\overrightarrow{c}$=3$\overrightarrow{a}$+m$\overrightarrow{b}$,
∴49${\overrightarrow{c}}^{2}$=9${\overrightarrow{a}}^{2}$+m2${\overrightarrow{b}}^{2}$+6m$\overrightarrow{a}•\overrightarrow{b}$,
∵|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{c}$|=1,$\overrightarrow{a}•\overrightarrow{b}$=cos60°=$\frac{1}{2}$.
∴49=9+m2+3m,
解得m=5或m=-8.
故答案为:5或-8.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知x,y>0,且x+y=1,则$\frac{1}{2x+1}$+$\frac{4}{2y+1}$的最小值为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,内角A,B,C的对边为a,b,c,已知2cos2$\frac{A}{2}$+(cosB-$\sqrt{3}$sinB)cosC=1.
(I)求角C的值.
(Ⅱ)若c=2,且△ABC的面积为$\sqrt{3}$,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知在△ABC中,内角∠A、∠B、∠C所对的边分别为a、b、c,其中c为最长边.
(1)若sin2A+sin2B=1,试判断△ABC的形状;
(2)若a2-c2=2b,且sinB=4cosAsinC,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x+2y≤8}\\{2x+y≤8}\\{x≥0}\\{y≥0}\end{array}\right.$ 则目标函数z=6x+2y-1的最大值为(  )
A.17B.20C.21D.23

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若双曲线M上存在四个点A,B,C,D,使得四边形ABCD是正方形,则双曲线M的离心率的取值范围是(  )
A.$({\sqrt{2},+∞})$B.$({\sqrt{2},2})$C.$({2,2+\sqrt{2}})$D.$({\sqrt{5},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的短轴长为2$\sqrt{3}$,且离心率e=$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设F1、F2是椭圆的左、右焦点,过F2的直线与椭圆相交于P、Q两点,求△F1PQ面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=|2x+a|+|x-$\frac{1}{a}$|(x∈R,实数a<0).
(Ⅰ)若f(0)>$\frac{5}{2}$,求实数a的取值范围;
(Ⅱ)求证:f(x)≥$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若集合A={0,1,2,4},B={1,2,3},则A∪B=(  )
A.{1,2}B.{0,3,4}C.{0,1,2,3,4}D.{0,1,1,2,2,3,4}

查看答案和解析>>

同步练习册答案