ÒÑÖªÊýÁÐ{an}ÖУ¬a1=2£¬a2=3£¬ÆäǰnÏîºÍSnÂú×ãSn+1+Sn-1=2Sn+1£¨n¡Ý2£¬n¡ÊN*£©£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{an}ΪµÈ²îÊýÁУ¬²¢Çó{an}µÄͨÏʽ£»
£¨2£©Éèbn=2n•an£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£»
£¨3£©ÉèCn=4n+£¨-1£©n-1•¦Ë2an£¨¦ËΪ·ÇÁãÕûÊý£¬n¡ÊN*£©£¬ÊÇ·ñ´æÔÚÈ·¶¨¦ËµÄÖµ£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*£¬ÓÐCn+1£¾Cnºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÊýÁеÄÇóºÍ,ÊýÁеÝÍÆÊ½
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÀûÓõÝÍÆÊ½¼°µÈ²îÊýÁеÄͨÏʽ¼´¿ÉµÃ³ö£»
£¨2£©ÀûÓá°´íλÏà¼õ·¨¡±¡¢µÈ±ÈÊýÁеÄǰnÏîºÍ¹«Ê½¼´¿ÉµÃ³ö£»
£¨3£©ÓÉ£¨1£©¿ÉµÃ£ºCn=4n+£¨-1£©n-1¡Á2n+1£¬¼ÙÉè´æÔÚ¦ËʹµÃ¶ÔÈÎÒân¡ÊN*£¬ÓÐCn+1£¾Cnºã³ÉÁ¢£¬Cn+1-Cn=4n+1+£¨-1£©n¡Á2n+2-[4n+£¨-1£©n-1•¦Ë¡Á2n+1]£¬»¯Îª£¨-1£©n-1•¦Ë£¼2n-1ºã³ÉÁ¢£®¶Ô¦Ë·ÖÀàÌÖÂÛ£¬¼´¿ÉµÃ³ö£®
½â´ð£º £¨1£©Ö¤Ã÷£ºÓÉÒÑÖª£ºSn+1+Sn-1=2Sn+1£¨n¡Ý2£¬n¡ÊN*£©£¬Sn+2+Sn=2Sn+1+1£¬
¡àan+2+an=2an+1£¬
µ±n=2ʱ£¬S3+S1=2S2+1£¬
¡à2a1+a2+a3=2a1+2a2+1£¬a3=a2+1=4£¬
¡à2a2=a1+a3=6£¬
¼´ÉÏʽ¶ÔÓÚn=1ʱҲ³ÉÁ¢£®
¡àÊýÁÐ{an}ΪµÈ²îÊýÁУ¬Ê×ÏîΪ2£¬¹«²îΪ1£®
¡àan=2+£¨n-1£©=n+1£®
£¨2£©½â£ºÓÉ£¨1£©bn=2n•an=£¨n+1£©•2n£»
¡àÊýÁÐ{bn}µÄǰnÏîºÍTn=2¡Á2+3¡Á22+4¡Á23+¡­+£¨n+1£©¡Á2n£¬
2Tn=2¡Á22+3¡Á23+4¡Á24+¡­+n¡Á2n+£¨n+1£©¡Á2n+1£¬
¡à-Tn=2¡Á2+22+23+¡­+2n-£¨n+1£©¡Á2n+1=2+
2(2n-1)
2-1
-£¨n+1£©¡Á2n+1=-n¡Á2n+1£¬
¡àTn=n¡Á2n+1£®
£¨3£©ÓÉ£¨1£©¿ÉµÃ£ºCn=4n+£¨-1£©n-1•¦Ë2an=4n+£¨-1£©n-1¡Á2n+1£¬
¼ÙÉè´æÔÚ¦ËʹµÃ¶ÔÈÎÒân¡ÊN*£¬ÓÐCn+1£¾Cnºã³ÉÁ¢£¬
Cn+1-Cn=4n+1+£¨-1£©n¡Á2n+2-[4n+£¨-1£©n-1•¦Ë¡Á2n+1]£¬»¯Îª£¨-1£©n-1•¦Ë£¼2n-1ºã³ÉÁ¢£®
£¨¢¡£©µ±nÎªÆæÊýʱ£¬¼´¦Ë£¼2n-1ºã³ÉÁ¢£¬
µ±ÇÒ½öµ±n=1ʱ£¬2n-1ÓÐ×îСֵΪ1£¬¡à¦Ë£¼1£®
£¨¢¢£©µ±nΪżÊýʱ£¬¼´¦Ë£¾-2n-1ºã³ÉÁ¢£¬
µ±ÇÒ½öµ±n=2ʱ£¬¦Ë£¾-2n-1ºã³ÉÁ¢£¬
µ±ÇÒ½öµ±n=2ʱ£¬-2n-1ÓÐ×î´óÖµ-2£¬
¡à¦Ë£¾-2£®¼´-2£¼¦Ë£¼1£¬ÓÖ¦ËΪ·ÇÁãÕûÊý£¬Ôò¦Ë=-1£®
×ÛÉÏËùÊö£¬´æÔÚ¦Ë=-1£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*£¬¶¼ÓÐCn+1£¾Cn£®
µãÆÀ£º±¾Ì⿼²éÁ˵ÝÍÆÊ½µÄÓ¦ÓᢵȲîÊýÁеÄͨÏʽ¡¢¡°´íλÏà¼õ·¨¡±¡¢µÈ±ÈÊýÁеÄǰnÏîºÍ¹«Ê½£¬¿¼²éÁË·ÖÀàÌÖÂÛµÄ˼Ïë·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èôx2£¾x1£¾1Ôò£¨¡¡¡¡£©
A¡¢e x1-x2£¼lgx1-lgx2
B¡¢e 
x2
x1
£¾lgx2-lgx1
C¡¢x1 x2£¾x2 x1
D¡¢x1 x2£¼x2 x1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

º¯Êýy=2sin£¨3x+
¦Ð
4
£©µÄ¶¨ÒåÓò
 
£»ÖµÓò
 
£»¶Ô³ÆÖÐÐÄΪ
 
£»¶Ô³ÆÖáΪ
 
£»µ¥µ÷ÔöÇø¼äΪ
 
£»µ¥µ÷¼õÇø¼äΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ô²×¶µÄÖá½ØÃæSABÊDZ߳¤Îª2µÄµÈ±ßÈý½ÇÐΣ¬OΪµ×ÃæµÄÖÐÐÄ£¬MΪSOµÄÖе㣬¶¯µãPÔÚÔ²×¶µ×ÃæÄÚ£¨°üÀ¨Ô²ÖÜ£©£¬Èô AM¡ÍMP£¬ÔòµãPÐγɵĹ켣µÄ³¤¶ÈΪ£¨¡¡¡¡£©
A¡¢
7
6
B¡¢
7
5
C¡¢
7
4
D¡¢
7
2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªa£ºb£ºc=3£º4£º5£¬ÊÔÅжÏÈý½ÇÐεÄÐÎ×´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª[x]±íʾ²»³¬¹ýxµÄ×î´óÕûÊý£¬ÀýÈç[-1.5]=-2£¬[1.2]=1£®É躯Êýf£¨x£©=[x[x]]£¬µ±x¡Ê[0£¬n£©£¬£¨n¡ÊN*£©Ê±£¬º¯Êýf£¨x£©µÄÖµÓòΪ¼¯ºÏA£¬ÔòAÖеÄÔªËØ¸öÊýΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èô²»µÈʽ|x+1|+|2x-1|£¾aºã³ÉÁ¢£¬ÔòaµÄȡֵ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼÊÇijÕýÎåÀą̂µÆÕֵĸ©ÊÓͼ£¬ÔÚA£¬B£¬C£¬D£¬EÎå¸ö²àÃæÉÏ×°ñÑ3ÖÖ²»Í¬µÄ͸Ã÷Öйúɽˮ»­£¬ÏàÁÚÇøÓòµÄÖйúɽˮ»­²»Í¬£¬Ôò²»Í¬µÄ×°ñÑ·½°¸ÊýÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÈôÊäÈëµÄxµÄֵΪ-
3
2
£¬ÔòÊä³öµÄiµÄֵΪ£¨¡¡¡¡£©
A¡¢4B¡¢3C¡¢2D¡¢1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸