精英家教网 > 高中数学 > 题目详情
若x2>x1>1则(  )
A、e x1-x2<lgx1-lgx2
B、e 
x2
x1
>lgx2-lgx1
C、x1 x2>x2 x1
D、x1 x2<x2 x1
考点:不等式的基本性质
专题:不等式的解法及应用
分析:不妨设x2=4,x1=2,检验可得各个选项是否正确,从而得出结论.
解答: 解:由x2>x1>1,不妨设x2=4,x1=2,则此时 e x1-x2=
1
e2
>0,lgx1-lgx2=lg
1
2
<0,故A不对.
此时e 
x2
x1
>=e2>e,lgx2-lgx1=lg2<1,故e 
x2
x1
>lgx2-lgx1 成立,即B正确.
此时 x1 x2=24=16,x2 x1=42=16,故C、D都不对,
故选:B.
点评:本题主要考查利用特殊值法比较几个式子的大小,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数的图象关于直线x=
3
2
对称,且对任意的实数x都有f(x)=-f(x+
3
2
),f(-1)=1,f(0)=-2,则f(2013)+f(2014)+f(2015)=(  )
A、0B、-2C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

一点沿直线运动,如果由始点起经过t秒后的距离为s=
1
4
t4-
7
3
t3+7t2-8t,则速度为零的时刻是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α,β三次函数f(x)=
1
3
x3+
1
2
ax2
+2bx(a,b∈R)的两个极值点,且α∈(0,1)β∈(1,2)求动点(a,b)所在区域的面积为(  )
A、
1
4
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

设U=R,集合A={x|x>0},B={x∈Z|x2-4≤0},则下列结论正确的是(  )
A、(∁UA)∩B={-2,-1,0}
B、(∁UA)∪B=(-∞,0]
C、(∁UA)∩B={1,2}
D、A∪B=(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,CM,CN为某公园景观湖胖的两条木栈道,∠MCN=120°,现拟在两条木栈道的A,B处设置观景台,记BC=a,AC=b,AB=c(单位:百米)
(1)若a,b,c成等差数列,且公差为4,求b的值;
(2)已知AB=12,记∠ABC=θ,试用θ表示观景路线A-C-B的长,并求观景路线A-C-B长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=asin(2x+
π
3
)+1(a>0)的定义域为R,若当-
12
≤x≤-
π
12
时,f(x)的最大值为2.
(1)求a的值;
(2)求图象的对称轴方程与对称中心坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

将下面用分析法证明
a2+b2
2
≥ab的步骤补充完整;要证
a2+b2
2
≥ab,只需证a2+b2≥2ab,也就是证
 
,即证
 
,由于
 
显然成立,因此原不等式成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=2,a2=3,其前n项和Sn满足Sn+1+Sn-1=2Sn+1(n≥2,n∈N*).
(1)求证:数列{an}为等差数列,并求{an}的通项公式;
(2)设bn=2n•an,求数列{bn}的前n项和Tn
(3)设Cn=4n+(-1)n-1•λ2an(λ为非零整数,n∈N*),是否存在确定λ的值,使得对任意n∈N*,有Cn+1>Cn恒成立?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案