精英家教网 > 高中数学 > 题目详情
定义在R上的函数的图象关于直线x=
3
2
对称,且对任意的实数x都有f(x)=-f(x+
3
2
),f(-1)=1,f(0)=-2,则f(2013)+f(2014)+f(2015)=(  )
A、0B、-2C、1D、2
考点:抽象函数及其应用
专题:函数的性质及应用
分析:根据条件求出函数的周期性,利用函数的周期性以及对称轴将自变量的值进行转化,即可得到结论.
解答: 解:由f(x)=-f(x+
3
2
),得f(x+
3
2
)=-f(x),
即f(x+3)=-f(x+
3
2
)=f(x),
即函数的周期是3,
则f(2013)+f(2014)+f(2015)=f(671×3)+f(671×3+1)+f(671×3+2)
=f(0)+f(1)+f(2),
∵函数的图象关于直线x=
3
2
对称,
∴f(
3
2
+x)=f(
3
2
-x),
则f(
3
2
+
1
2
)=f(
3
2
-
1
2
),
即f(2)=f(1),
∵f(2)=f(2-3)=f(-1)=1,
∴f(0)+f(1)+f(2)=f(0)+2f(2)=-2+2=0,
故f(2013)+f(2014)+f(2015)=0,
故选:A
点评:本题主要考查函数值的计算,根据条件求出函数的周期性,利用函数奇偶性和对称性进行转化是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线
3
x+y-b=0截圆x2+y2-4y=0所得的劣弧所对的圆心角为
3
,则实数b的值是(  )
A、2+2
3
B、4
C、2±2
3
D、0或4

查看答案和解析>>

科目:高中数学 来源: 题型:

2+24+27+…+23n+1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,an+1-ansin2θ=sin2θ•cos2nθ.
(Ⅰ)当θ=
π
4
时,求数列{an}的通项公式;
(Ⅱ)在(Ⅰ)的条件下,若数列{bn}满足bn=sin
πan
2
,Sn为数列{bn}的前n项和,求证:对任意n∈N*,Sn<3+
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式
x≥0
x+3y≥3
3x+2y≤6
所表示的平面区域被直线y=kx+2分成面积比是1:3的两部分,则k的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

R表示实数集,集合M={x|0≤x≤2},N={x|x2-3x-4>0},则下列结论正确的是(  )
A、M⊆N
B、(∁RM)⊆N
C、M⊆(∁RN)
D、(∁RM)⊆(∁RN)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
3
-y2=1的左,右焦点分别为F1,F2,点P在双曲线上,且满足|PF1|+|PF2|=2
5
,则△PF1F2的面积为(  )
A、
5
B、
3
C、1
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆Γ1
x2
m2
+
y2
m2-4
=1和双曲线Γ2
x2
n2
-
y2
4-n2
=1的公共焦点,P是它们的一个公共点,且∠F1PF2=
π
3
,则mn的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若x2>x1>1则(  )
A、e x1-x2<lgx1-lgx2
B、e 
x2
x1
>lgx2-lgx1
C、x1 x2>x2 x1
D、x1 x2<x2 x1

查看答案和解析>>

同步练习册答案