精英家教网 > 高中数学 > 题目详情
18.用长为6a的铁丝围成一个矩形,当长为$\frac{3a}{2}$时,面积最大,最大值为$\frac{9{a}^{2}}{4}$.

分析 设矩形长为xcm(0<x<3a),则宽为(3a-x)cm,面积S=x(3a-x),利用基本不等式即可求得矩形的最大面积

解答 解:设矩形长为xcm(0<x<3a),则宽为(3a-x)cm,
面积S=x(3a-x),由于x>0,3a-x>0,
可得S≤($\frac{x+3a-x}{2}$)2=$\frac{9{a}^{2}}{4}$当且仅当x=3a-x,即x=$\frac{3a}{2}$时,Smax=$\frac{9{a}^{2}}{4}$.
所以矩形的最大面积是$\frac{9{a}^{2}}{4}$.
故答案为:$\frac{3a}{2}$,$\frac{9{a}^{2}}{4}$

点评 本题考查基本不等式,设矩形长为xcm,求得面积S=x(8-x)是关键,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.长方体ABCD-A1B1C1D1中E、F分别在BB1、DD1上且AE⊥A1B,AF⊥A1D.
(1)求证:A1C⊥面AEF;
(2)若AB=4,AD=3,AA1=5,求异面直线A1C、BD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=Asin($\frac{π}{4}$x+$\frac{π}{4}$),x∈R,且f(-2015)=3
(1)求A的值.
(2)指出函数f(x)在x∈[0,8]上的单调区间(不要求过程).
(3)若f($\frac{4a}{π}$-1)+f($\frac{4a}{π}$+1)=$\frac{3}{5}$,a∈[0,π],求cos2a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求函数f(x,y)=ln(1+x2+y2)+1-$\frac{{x}^{3}}{15}$-$\frac{{y}^{2}}{4}$的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知i是虚数单位,若(-1-2i)z=1-i则$\overline z$在复平面上所代表的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{a}$=($\sqrt{7}$,-3),|$\overrightarrow{b}$|=1,且$\overrightarrow{a}$+2$\overrightarrow{b}$与$\overrightarrow{b}$垂直,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角<$\overrightarrow{a}$,$\overrightarrow{b}$>=120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx-ax-b(a,b∈R)
(Ⅰ)若函数f(x)在x=1处取得极值1,求a,b的值
(Ⅱ)讨论函数f(x)在区间(1,+∞)上的单调性
(Ⅲ)对于函数f(x)图象上任意两点A(x1,y1),B(x2,y2)(x1<x2),不等式f′(x0)<k恒成立,其中k为直线AB的斜率,x0=λx1+(1-λ)x2,0<λ<1,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=$\left\{\begin{array}{l}cos\frac{πx}{6},0<x≤8\\ lo{g}_{2}x,x>8\end{array}\right.$,则f(f(-16))=(  )
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知不等式组$\left\{\begin{array}{l}{x≤2}\\{y≥1}\\{x-y≥0}\end{array}\right.$的解集记为D,则对?(x,y)∈D使得2x-y取最大值时的最优解是(  )
A.(2,1)B.(2,2)C.3D.4

查看答案和解析>>

同步练习册答案