分析 (1)由已知数量关系可得A1C⊥AE,A1C⊥AF,由线面垂直的判定定理可得;
(2)建立坐标系,可得$\overrightarrow{{A}_{1}C}$和$\overrightarrow{BD}$的坐标,由直线的夹角和向量夹角的关系可得.
解答 解:(1)如图所示,∵CB⊥平面A1B,
∴A1C在平面A1B上的射影为A1B,
由A1B⊥AE,AE?平面A1B可得A1C⊥AE,
同理可证A1C⊥AF,
∵A1C⊥AF,A1C⊥AE,AF∩AE=A,
∴A1C⊥平面AEF;
(2)建立如图所示的坐标系,
由AB=4,AD=3,AA1=5可得A1(3,0,0),
C(0,4,5),B(3,4,5),D(0,0,5),
∴$\overrightarrow{{A}_{1}C}$=(-3,4,5),$\overrightarrow{BD}$=(-3,-4,0)
∴异面直线A1C、BD所成角的余弦值为|cos<$\overrightarrow{{A}_{1}C}$,$\overrightarrow{BD}$>|
=$\frac{|9-16|}{\sqrt{(-3)^{2}+{4}^{2}+{5}^{2}}•\sqrt{(-3)^{2}+(-4)^{2}}}$=$\frac{7\sqrt{2}}{50}$![]()
点评 本题考查异面直线所成的角和线面垂直的判定,涉及空间向量的夹角,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{2\sqrt{5}}{5}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{3\sqrt{10}}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{24}{7}$ | D. | -$\frac{24}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,0) | B. | (1,0) | C. | (2,0) | D. | (3,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com