精英家教网 > 高中数学 > 题目详情
2.如图,圆锥的高PO=$\sqrt{2}$,底面⊙O的直径AB=2,C是圆上一点,且∠CAB=30°,D为AC的中点,则点B到平面PAC的距离(  )
A.$\frac{1}{2}$B.$\frac{2\sqrt{2}}{3}$C.$\frac{\sqrt{2}}{3}$D.1

分析 由已知易得AC⊥OD,AC⊥PO,可证面POD⊥平面PAC,由平面垂直的性质考虑在平面POD中过O作OH⊥PD于H,则OH⊥平面PAC,在Rt△OHC中,求得OH,点B到平面PAC的距离等于2OH,即可求解.

解答 解:因为OA=OC,D是AC的中点,所以AC⊥OD,
又PO⊥底面⊙O,AC?底面⊙O,
所以AC⊥PO,而OD,PO是平面内的两条相交直线
所以AC⊥平面POD,又AC?平面PAC
所以平面POD⊥平面PAC
在平面POD中,过O作OH⊥PD于H,则OH⊥平面PAC
在Rt△ODA中,OD=DA•sin30=$\frac{1}{2}$
在Rt△POD中,OH=$\frac{\sqrt{2}×\frac{1}{2}}{\sqrt{2+\frac{1}{4}}}=\frac{\sqrt{2}}{3}$,
点B到平面PAC的距离等于2OH=$\frac{2\sqrt{2}}{3}$.
故选;B

点评 题主要考查了直线与平面垂直的判定定理的应用,空间距离的求解,考查了运算推理的能力及空间想象的能力.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知全集I={1,2,3,4,5,6},集合A={1,3,5},B={2,3,6},则(∁IA)∩B={2,6}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π) 的图象如图所示,则ω=$\frac{3}{2}$;φ=$-\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,左右顶点分别为A1,A2,P为椭圆上任意一点(不包括椭圆的顶点),则以线段PFi(i=1,2)为直径的圆与以A1A2为直径的圆的位置关系为内切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(Ⅰ)求证:$\sqrt{3}$+$\sqrt{7}$<2$\sqrt{5}$
(Ⅱ)若a,b,c是实数,求证:a2+b2+c2≥ab+bc+ca.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知全集U=R,集合$A=\left\{{x|y=\sqrt{1-x}}\right\}$,集合B={x|x2-2x<0},则A∩B等于(  )
A.[1,2)B.(1,2)C.[0,1]D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.有2个男生和2个女生一起乘车去抗日战争纪念馆参加志愿者服务,他们依次上车,则第二个上车的是女生的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某种产品的质量以其质量指标值衡量,并依据质量指标值划分等极如下表:
质量指标值mm<185185≤m<205m≥205
等级三等品二等品一等品
从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:

(Ⅰ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定?
(Ⅱ)在样本中,按产品等极用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;
(III)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X近似满足X~N(218,140}),则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知x∈R,则“x<1”是“x2<1”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分又不必要条件

查看答案和解析>>

同步练习册答案