分析 (1)取PD的中点G,连接AG,FG,则由中位线定理可知四边形AEFG是平行四边形,于是EF∥AG,从而得出EF∥平面PAD;
(2)由PD⊥平面ABCD得出PD⊥CE,由勾股定理的逆定理得出CE⊥DE,于是CE⊥平面PDE,故而平面PDE⊥平面PEC.
解答
证明:(1)取PD的中点G,连接AG,FG.
∵F,G分别是PC,PD的中点,
∴GF∥DC,GF=$\frac{1}{2}$DC,
又E是AB的中点,
∴AE∥DC,且AE=$\frac{1}{2}$DC,
∴GF∥AE,且GF=AE,
∴四边形AEFG是平行四边形,故EF∥AG.
又EF?平面PAD,AG?平面PAD,
∴EF∥平面PAD.
(2)∵PD⊥底面ABCD,EC?底面ABCD,
∴CE⊥PD.
∵四边形ABCD是矩形,AB=2AD,
∴DE=$\sqrt{2}$AD,CE=$\sqrt{2}$AD,CD=2AD,
∴DE2+CE2=CD2,即CE⊥DE,
又PD?平面PDE,DE?平面PDE,PD∩DE=D,
∴CE⊥平面PDE.
∵CE?平面PEC,
∴平面PDE⊥平面PEC.
点评 本题考查了线面平行,面面垂直的判定,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | $\frac{7}{3}$ | C. | -$\frac{1}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 空间三点确定一个平面 | |
| B. | 过直线外一点有且只有一条直线与已知直线垂直 | |
| C. | 如果一条直线与平面内的一条直线平行,则这条直线与平面平行 | |
| D. | 三个平面最多将可空间分成八块 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $\frac{9}{2}$ | C. | 5 | D. | 6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com