精英家教网 > 高中数学 > 题目详情
6.如图,四棱锥P-ABCD中,底面ABCD是矩形,AB=2AD,PD⊥底面ABCD,E,F分别为棱AB,PC的中点.
(1)求证:EF∥平面PAD;
(2)求证:平面PDE⊥平面PEC.

分析 (1)取PD的中点G,连接AG,FG,则由中位线定理可知四边形AEFG是平行四边形,于是EF∥AG,从而得出EF∥平面PAD;
(2)由PD⊥平面ABCD得出PD⊥CE,由勾股定理的逆定理得出CE⊥DE,于是CE⊥平面PDE,故而平面PDE⊥平面PEC.

解答 证明:(1)取PD的中点G,连接AG,FG.
∵F,G分别是PC,PD的中点,
∴GF∥DC,GF=$\frac{1}{2}$DC,
又E是AB的中点,
∴AE∥DC,且AE=$\frac{1}{2}$DC,
∴GF∥AE,且GF=AE,
∴四边形AEFG是平行四边形,故EF∥AG.
又EF?平面PAD,AG?平面PAD,
∴EF∥平面PAD.
(2)∵PD⊥底面ABCD,EC?底面ABCD,
∴CE⊥PD.
∵四边形ABCD是矩形,AB=2AD,
∴DE=$\sqrt{2}$AD,CE=$\sqrt{2}$AD,CD=2AD,
∴DE2+CE2=CD2,即CE⊥DE,
又PD?平面PDE,DE?平面PDE,PD∩DE=D,
∴CE⊥平面PDE.
∵CE?平面PEC,
∴平面PDE⊥平面PEC.

点评 本题考查了线面平行,面面垂直的判定,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设x,y满足约束条件$\left\{\begin{array}{l}{y≤2x}\\{x+y≤1}\\{y+1≥0}\end{array}\right.$,则z=x+3y的最大值是(  )
A.$\frac{4}{3}$B.$\frac{7}{3}$C.-$\frac{1}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn=2an-3•2n+4(其中n∈N*
(1)设bn=$\frac{{a}_{n}}{{2}^{n}}$,证明:数列{bn}是等差数列;
(2)设cn=4n+(-1)n-1•λ•$\frac{2{a}_{n+1}}{3n+2}$(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有cn+1>cn成立;
(3)设dn=$\frac{(3n+5)•{2}^{n-1}}{{a}_{n}•{a}_{n+1}}$,数列{dn}的前n项和为Tn,求证:$\frac{2}{5}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.等差数列{an}的前n项和为Sn,且(a2-1)3+2016(a2-1)=sin$\frac{2011π}{3}$,(a2015-1)3+2016(a2015-1)=cos$\frac{2011π}{6}$,则S2016=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.△ABC是正三角形,平面ABC外有一点O,且OA=OB=OC,截面PQRS平行于OA和BC,则四边形PQRS是距形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在空间中,下列结论正确的是(  )
A.空间三点确定一个平面
B.过直线外一点有且只有一条直线与已知直线垂直
C.如果一条直线与平面内的一条直线平行,则这条直线与平面平行
D.三个平面最多将可空间分成八块

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前项和为Sn,且满足2Sn=1-2an
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=n•an,求证:数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知实数a>0,b>0,0<m<4,且a+b=2,则$\frac{1}{a}$+$\frac{4}{(4-m)b}$+$\frac{4}{mb}$的最小值为(  )
A.4B.$\frac{9}{2}$C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知A={x|$\frac{2}{x}$>1},B={x|log2(x-1)<1},则A∩B={x|1<x<2}.

查看答案和解析>>

同步练习册答案