分析 根据直线与圆相交,圆x2+y2=(2$\sqrt{3}$)2可知:圆心为(0,0),半径r=2$\sqrt{3}$,弦长为|AB|=4$\sqrt{3}$=2r,说明直线过圆心.求解k的值.得到直线AB的倾斜角,根据AOC和OBD是两个全等的直角三角形,OA=OB=2$\sqrt{3}$
即可求出OC和OD.即可得到|CD|的长度.
解答
解:由圆的方程x2+y2=(2$\sqrt{3}$)2可知:圆心为(0,0),半径r=2$\sqrt{3}$,
∵弦长为|AB|=4$\sqrt{3}$=2r,说明,直线过圆心.
则有:0=k(0-1)-$\sqrt{3}$,解得k=$\sqrt{3}$,
直线AB的方程为:y=$\sqrt{3}$x.
设直线AB的倾斜角为θ,则tanθ=$\sqrt{3}$,
∴θ=60°
Rt△AOC中:|CO|=$\frac{|OA|}{cos60°}$=$\frac{2\sqrt{3}}{\frac{1}{2}}$=$4\sqrt{3}$
那么:|CD|=2|OC|=$8\sqrt{3}$
故答案为:$8\sqrt{3}$.
点评 本题考查了直线与圆的位置关系的运用,弦长的问题.属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | -1 | D. | 1或-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\stackrel{∧}{b}$与r的符号相同 | B. | $\stackrel{∧}{a}$与r的符号相反 | C. | $\stackrel{∧}{b}$与r的符号相反 | D. | $\stackrel{∧}{a}$与r的符号相同 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 19 | B. | 20 | C. | 21 | D. | 22 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com