精英家教网 > 高中数学 > 题目详情
9.已知关于x的不等式m-|x-2|≥1,其解集为[0,4].
(Ⅰ)求m的值;
(Ⅱ)若a,b均为正实数,且满足a+b=m,求a2+b2的最小值.

分析 (Ⅰ)去掉绝对值,求出解集,利用解集为[0,4],求m的值;
(Ⅱ)利用柯西不等式,即可求a2+b2的最小值.

解答 解:(Ⅰ)不等式m-|x-2|≥1可化为|x-2|≤m-1,…(1分)
∴1-m≤x-2≤m-1,即3-m≤x≤m+1,…(2分)
∵其解集为[0,4],∴$\left\{\begin{array}{l}{3-m=0}\\{m+1=4}\end{array}\right.$,∴m=3.…(5分)
(Ⅱ)由(Ⅰ)知a+b=3,
∵(a2+b2)(12+12)≥(a×1+b×1)2=(a+b)2=9,
∴a2+b2≥$\frac{9}{2}$,∴a2+b2的最小值为$\frac{9}{2}$.…(10分)

点评 本题考查不等式的解法,考查柯西不等式,正确运用柯西不等式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{{e}^{ax}}{x}$(a∈R).
(1)若曲线f(x)在x=1的切线与直线x+e2y+1=0垂直,求曲线f(x)在x=1处的切线方程;
(2)若f(x)在[1,2]上最小值为e,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在正方体ABCD-A1B1C1D1中,M是被A1B1的中点,点P是侧面CDD1C1上的动点,且MP∥截面AB1C,则线段MP扫过的图形是(  )
A.中心角为30°的扇形B.直角三角形
C.钝角三角形D.锐角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在圆柱OO1中,ABCD为轴截面,AB=4,BC=6,D为⊙O1圆周上的点,$\widehat{BP}$的长度等于$\widehat{AP}$长度的2倍,则AD与PC所成角的余弦值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.将正整数排成如图,其中排在第i行第j列的数若记为a${\;}_{i}^{j}$,例如a${\;}_{4}^{2}$=8,则a${\;}_{63}^{63}$=2016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,∠A=60°,∠A的内角平分线AD将BC分成BD、DC两段,若向量$\overrightarrow{AD}=\frac{1}{3}\overrightarrow{AB}+λ\overrightarrow{AC}(λ∈{R})$,则∠B=(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线C:x2=2py(p>0)的焦点是F,准线是l,经过C上两点A、B分别作C的切线l1、l2
(Ⅰ)若l1交y轴于点D,求证:△AFD为等腰三角形;
(Ⅱ)设l1与l2交于点E在l上,求证:三点A、B、F共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在三棱锥P-ABC中,PA⊥平面ABC,2AC=PC=2,AC⊥BC,D,E,F分别为AC,AB,AP的中点,M,N分别为线段PC,PB上的动点,且有MN∥BC,
(Ⅰ)求证:MN⊥平面PAC
(Ⅱ)探究:是否存在这样的动点M,使得二面角E-MN-F为直二面角?若存在,求CM的长度,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若集合P={x|x<1},Q={x|x>-1},则集合∁RP与Q的关系是?.

查看答案和解析>>

同步练习册答案