精英家教网 > 高中数学 > 题目详情
18.如图,在三棱锥P-ABC中,PA⊥平面ABC,2AC=PC=2,AC⊥BC,D,E,F分别为AC,AB,AP的中点,M,N分别为线段PC,PB上的动点,且有MN∥BC,
(Ⅰ)求证:MN⊥平面PAC
(Ⅱ)探究:是否存在这样的动点M,使得二面角E-MN-F为直二面角?若存在,求CM的长度,若不存在,说明理由.

分析 (Ⅰ)证明:BC⊥平面PAC,利用MN∥BC,即可证明MN⊥平面PAC;
(Ⅱ)由(Ⅰ)MN⊥平面PAC,∠DMF是二面角E-MN-F的平面角,由题意,∠DMF=90°,可得M是PC的中点,即可求CM的长度.

解答 (Ⅰ)证明:∵PA⊥平面ABC,BC?平面ABC,
∴PA⊥BC,
∵AC⊥BC,PA∩AC=A,
∴BC⊥平面PAC,
∵MN∥BC,
∴MN⊥平面PAC
(Ⅱ)解:由(Ⅰ)MN⊥平面PAC,
∴MN⊥MF,MN⊥MD,
∴∠DMF是二面角E-MN-F的平面角,
由题意,∠DMF=90°,∴M是PC的中点,
∴CM=$\frac{1}{2}$PC=1.

点评 本题考查线面垂直的判定,考查二面角的平面角,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.从数字1,2,3,4,5,6,7中任取3个奇数,2个偶数,组成一个无重复数字且两个偶数数字不相邻的5位数,则满足条件的5位数共有(  )个.
A.864B.432C.288D.144

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知关于x的不等式m-|x-2|≥1,其解集为[0,4].
(Ⅰ)求m的值;
(Ⅱ)若a,b均为正实数,且满足a+b=m,求a2+b2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知△ABC是边长为2的正三角形,点P是△ABC内一点,且$\overrightarrow{PA}$+2$\overrightarrow{PB}$+3$\overrightarrow{PC}$=$\overrightarrow{0}$.则$\overrightarrow{PA}$•$\overrightarrow{PB}$等于(  )
A.-$\frac{2}{9}$B.-$\frac{1}{9}$C.$\frac{2}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知关于x的二次函数f(x)=ax2-4bx+1,设(a,b)是区域$\left\{\begin{array}{l}x+y-8≤0\\ x>0\\ y>0\end{array}\right.$,内的随机点,则函数f(x)在区间[1,+∞)上是增函数的概率是(  )
A.$\frac{2}{3}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在边长为4的正方形ABCD内任取一点M,则∠AMB>90°的概率为(  )
A.$\frac{π}{8}$B.1-$\frac{π}{8}$C.$\frac{π}{4}$D.1-$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在数列{an}中,an+an+1+an+2为同一定值,且a13+a15+a17=3,该数列的前n项和记为Sn,给出下列结论:
①数列{an}一定为常数列;
②a1有无数个值;
③S3n=3n;
④数列{an}不可能为等比数列,
其中结论正确的为②③(写出所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知k为合数,且1<k<100,当k的各数位上的数字之和为质数时,称此质数为k的“衍生质数”.
(1)若k的“衍生质数”为2,则k=20;
(2)设集合A={P(k)|P(k)为k的“衍生质数”},B={k|P(k)为k的“衍生质数”},则集合A∪B中元素的个数是30.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=ax5+bx3-cx+2,f(-3)=9,则f(3)=-5.

查看答案和解析>>

同步练习册答案