精英家教网 > 高中数学 > 题目详情
14.如果一个三位正整数如“a1a2a3”满足a1<a2>a3,则称这样的三位数为凸数(如120,232,354等),那么所有小于700的凸数的个数为(  )
A.44B.86C.112D.214

分析 按照中间一个数字的情况分8类,当中间数为2时,百位数字只能选1,个位数字可以选1和0,当中间数为3时,百位数字有两种选择,个位数字有3种选择,以此类推,写出其他情况,利用加法原理得到结果.

解答 解:按照中间一个数字的情况分8类,
当中间数为2时,百位数字只能选1,个位数字可以选1和0,有1×2=2种;
当中间数为3时,百位数字有两种选择,个位数字有3种选择,有2×3=6种;
以此类推
当中间数为4时,有3×4=12种;
当中间数为5时,有4×5=20种;
当中间数为6时,有5×6=30种;
当中间数为7时,有6×7=42种;
当中间数为8时,首位只有6种选择,末尾有8种选择,故有6×8=48种,
当中间数为9时,首位只有6种选择,末尾有9种选择,故有6×9=54种,
根据分类计数原理知故共有2+6+12+20+30+42+48+54=214种.
故选:D.

点评 数字问题是排列中的一大类问题,条件变换多样,把排列问题包含在数字问题中,解题的关键是看清题目的实质,很多题目要分类讨论,要做到不重不漏.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数g(x)=2cos(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变)后得到h(x)的图象,设f(x)=$\frac{1}{4}$x2+h(x),则f′(x)的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知α是锐角,$sinα=\frac{3}{5},则tanα$=(  )
A.$\frac{4}{5}$B.$\frac{3}{4}$C.$\frac{4}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a,b,c是正实数,则“b≤$\sqrt{ac}$”是“a+c≥2b”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f″(x)是函数y=f(x)的导函数f′(x)的导数,定义:若f(x)=ax3+bx2+cx+d(a≠0),且方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的对称中心.有同学发现“任何一个三次函数都有对称中心”,请你运用这一发现处理下列问题:
设$g(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+2x+\frac{1}{12}$,则$g(\frac{1}{2016})+g(\frac{2}{2016})+g(\frac{3}{2016})+…+g(\frac{2015}{2016})$=2015.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数中既是奇函数,又在区间(0,+∞)内是增函数的为(  )
A.y=sinx,x∈RB.y=ln|x|,x∈R,且x≠0C.y=x3,x∈RD.y=x2,x∈R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.曲线y=x2-1在点(1,0)处的切线方程为(  )
A.y=x-1B.y=-x+1C.y=2x-2D.y=-2x+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.方程$\left\{\begin{array}{l}{x=1+sinθ}\\{y=sin2θ}\end{array}\right.$(θ是参数)所表示曲线经过下列点中的(  )
A.(1,1)B.($\frac{2}{3}$,$\frac{1}{2}$)C.($\frac{3}{2}$,$\frac{\sqrt{3}}{2}$)D.($\frac{2+\sqrt{3}}{2}$,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.sin($\frac{π}{6}$+$\frac{2π}{3}$)=sin$\frac{π}{6}$是否成立?如果成立,能否说$\frac{2π}{3}$是函数y=sinx的周期?为什么?

查看答案和解析>>

同步练习册答案