精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.
(Ⅰ)求证:BD∥平面FGH;
(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.

【答案】解:(Ⅰ)证明:根据已知条件,DF∥AC,EF∥BC,DE∥AB; △DEF∽△ABC,又AB=2DE,
∴BC=2EF=2BH,
∴四边形EFHB为平行四边形;
∴BE∥HF,HF平面FGH,BE平面FGH;
∴BE∥平面FGH;
同样,因为GH为△ABC中位线,∴GH∥AB;
又DE∥AB;
∴DE∥GH;
∴DE∥平面FGH,DE∩BE=E;
∴平面BDE∥平面FGH,BD平面BDE;
∴BD∥平面FGH;
(Ⅱ)连接HE,则HE∥CF;
∵CF⊥平面ABC;
∴HE⊥平面ABC,并且HG⊥HC;
∴HC,HG,HE三直线两两垂直,分别以这三直线为x,y,z轴,建立如图所示空间直角坐标系,设HC=1,则:

H(0,0,0),G(0,1,0),F(1,0,1),B(﹣1,0,0);
连接BG,根据已知条件BA=BC,G为AC中点;
∴BG⊥AC;
又CF⊥平面ABC,BG平面ABC;
∴BG⊥CF,AC∩CF=C;
∴BG⊥平面ACFD;
∴向量 为平面ACFD的法向量;
设平面FGH的法向量为 ,则:
,取z=1,则:
设平面FGH和平面ACFD所成的锐二面角为θ,则:cosθ=|cos |=
∴平面FGH与平面ACFD所成的角为60°
【解析】(Ⅰ)根据AB=2DE便可得到BC=2EF,从而可以得出四边形EFHB为平行四边形,从而得到BE∥HF,便有BE∥平面FGH,再证明DE∥平面FGH,从而得到平面BDE∥平面FGH,从而BD∥平面FGH;(Ⅱ)连接HE,根据条件能够说明HC,HG,HE三直线两两垂直,从而分别以这三直线为x,y,z轴,建立空间直角坐标系,然后求出一些点的坐标.连接BG,可说明 为平面ACFD的一条法向量,设平面FGH的法向量为 ,根据 即可求出法向量 ,设平面FGH与平面ACFD所成的角为θ,根据cosθ= 即可求出平面FGH与平面ACFD所成的角的大小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数f(x)=kax﹣ax(a>0且a≠1)在(﹣∞,+∞)上既是奇函数又是增函数,则函数g(x)=loga(x+k)的图象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的函数,它的图象关于点(1,0)对称,当x≤1时,f(x)=2xex(e为自然对数的底数),则f(2+3ln2)的值为(
A.48ln2
B.40ln2
C.32ln2
D.24ln2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解篮球爱好者小张的投篮命中率与打篮球时间之间的关系,下表记录了小张某月1号到5号每天打篮球时间(单位:小时)与当天投篮命中率之间的关系:

时间

1

2

3

4

5

命中率

0.4

0.5

0.6

0.6

0.4


(1)求小张这天的平均投篮命中率;

(2)利用所给数据求小张每天打篮球时间(单位:小时)与当天投篮命中率之间的线性回归方程;(参考公式:

(3)用线性回归分析的方法,预测小李该月号打小时篮球的投篮命中率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a、b、c三个实数成等差数列,则直线bx+ay+c=0与抛物线 的相交弦中点的轨迹方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年10月18日至24日,中国共产党第十九次全国人民代表大会在北京顺利召开.大会期间,北京某高中举办了一次“喜迎十九大”的读书读报知识竞赛,参赛选手为从高一年级和高二年级随机抽取的各100名学生.图1和图2分别是高一年级和高二年级参赛选手成绩的频率分布直方图.

(1)分别计算参加这次知识竞赛的两个年级学生的平均成绩;

(2)若称成绩在68分以上的学生知识渊博,试以上述数据估计该高一、高二两个年级学生的知识渊博率;

(3)完成下面2×2列联表,并回答能否在犯错误的概率不超过0.010的前提下,认为高一、高二两个年级学生这次读书读报知识竞赛的成绩有差异.

分类

成绩低于60分人数

成绩不低于60分人数

总计

高一年级

高二年级

总计

附:

P(K2≥k)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

K2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有7名数理化成绩优秀者,其中A1,A2,A3数学成绩优秀,B1,B2物理成绩优秀,C1,C2化学成绩优秀,从中选出数学、物理、化学成绩优秀者各1名,组成一个小组代表学校参加竞赛.

(1)求C1被选中的概率;

(2)求A1,B1不全被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点C在以AB为直径的圆O上,PA垂直于圆O所在的平面,G为△AOC的重心.
(1)求证:平面OPG⊥平面PAC;
(2)若PA=AB=2AC=2,求二面角A﹣OP﹣G的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差d>0,且a1a6=11,a3+a4=12.
(1)求数列{an}的通项公式;
(2)求数列{ }的前n项和Tn

查看答案和解析>>

同步练习册答案