精英家教网 > 高中数学 > 题目详情
14.已知A,B分别为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,不同两点P,Q在双曲线C上,且关于x轴对称,设直线AP,BQ的斜率分别为λ,μ,则当$\frac{16}{λμ}$+λμ取最大值时,双曲线C的离心率为(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.$\sqrt{2}$D.2$\sqrt{2}$

分析 设P(x0,y0),则Q(x0,-y0),y02=b2($\frac{{{x}_{0}}^{2}}{{a}^{2}}$-1).A(-a,0),B(a,0),利用斜率计算公式得到:λμ=-$\frac{{b}^{2}}{{a}^{2}}$,运用基本不等式求得最大值,注意等号成立的条件,再由离心率公式即可得出.

解答 解:设P(x0,y0),则Q(x0,-y0),y02=b2($\frac{{{x}_{0}}^{2}}{{a}^{2}}$-1),
即有$\frac{{{y}_{0}}^{2}}{{{x}_{0}}^{2}-{a}^{2}}$=$\frac{{b}^{2}}{{a}^{2}}$,
由双曲线的方程可得A(-a,0),B(a,0),
则λ=$\frac{{y}_{0}}{{x}_{0}+a}$,μ=$\frac{{y}_{0}}{a-{x}_{0}}$,
∴λμ=$\frac{{{y}_{0}}^{2}}{{a}^{2}-{{x}_{0}}^{2}}$=-$\frac{{b}^{2}}{{a}^{2}}$,
$\frac{16}{λμ}$+λμ=-[(-$\frac{16}{λμ}$)+(-λμ)]≤-2$\sqrt{\frac{16}{-λμ}•(-λμ)}$=-8,
当且仅当λμ=-4,即有b=2a,
c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{5}$a,
可得离心率e=$\frac{c}{a}$=$\sqrt{5}$.
故选:A.

点评 本题考查了双曲线的标准方程及其性质,考查直线的斜率公式,利用基本不等式求最值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知向量$\vec a,\vec b,\vec c$是空间的一个单位正交基底,向量$\vec a+\vec b,\vec a-\vec b,\vec c$是空间的另一个基底.若向量$\vec m$在基底$\vec a,\vec b,\vec c$下的坐标为(1,2,3),则$\vec m$在基底$\vec a+\vec b,\vec a-\vec b,\vec c$下的坐标为($\frac{3}{2}$,-$\frac{1}{2}$,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若复数z满足z(4-i)=5+3i(i为虚数单位),则复数z的共轭复数为(  )
A.1-iB.-1+iC.1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆O:x2+y2=9,直线l1:x=6,圆O与x轴相交于点A,B(如图),点P(-1,2)是圆O内一点,点Q为圆O上任一点(异于点A、B),直线AQ与l1相交于点C.
(1)若过点P的直线l2与圆O相交所得弦长等于4$\sqrt{2}$,求直线l2的方程;
(2)设直线BQ、BC的斜率分别为kBQ、kBC,求证:kBQ•kBC为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.己知($\sqrt{x}$+$\frac{2}{{x}^{2}}$)n的展开式中,第五项与第七项的二项式系数相等.
(I )求该展开式中所有有理项的项数;
(II)求该展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,某生态园将一块三角形地ABC的一角APQ开辟为水果园,已知角A为120°,AB,AC的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.
(1)若围墙AP、AQ总长度为200米,如何可使得三角形地块APQ面积最大?
(2)已知竹篱笆长为50$\sqrt{3}$米,AP段围墙高1米,AQ段围墙高2米,造价均为每平方米100元,若AP≥AQ,求围墙总造价的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=|2x-a|+a,a∈R,g(x)=|2x-1|.
(1)若当g(x)≤3时,恒有f(x)≤6,求a的最大值;
(2)若不等式f(x)-g(x)≥3有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=cos2x-$\sqrt{3}$sin2x,把y=f(x)的图象向左平移$φ({|φ|<\frac{π}{2}})$个单位后,得到的部分图象如图所示,则f(φ)的值等于(  )
A.$-\sqrt{3}$B.$\sqrt{3}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=2,四棱锥P-ABCD的五个顶点都在一个球面上,则这个球的表面积是12π.

查看答案和解析>>

同步练习册答案