分析 (1)分别求出g(x)≤3,f(x)≤6时的x的范围,得到关于a的不等式,解出即可;
(2)由|2x-a|-|2x-1|+a≤|a-1|+a,得|a-1|+a≥3,解出即可.
解答 解:(1)当g(x)≤3时,|2x-1|≤3,求得-3≤2x-1≤3,即-1≤x≤2.…(2分)
由f(x)≤6可得|2x-a|≤6-a,即a-6≤2x-a≤6-a,即a-3≤x≤3…(3分)
根据题意可得,a-3≤-1,求得a≤2,故a的最大值为2.…(5分)
(2)f(x)-g(x)=|2x-a|-|2x-1|+a,
∵||2x-a|-|2x-1||≤|2x-a-2x+1|≤|a-1|,
∴|2x-a|-|2x-1|+a≤|a-1|+a…(7分)
不等式f(x)-g(x)≥3有解,
∴|a-1|+a≥3,…(8分)
即a-1≥3-a或a-1≤a-3
解得:a≥2或空集,
即所求的a的范围是[2,+∞).…(10分)
点评 本题考查了解绝对值不等式问题,考查分类讨论思想,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 增加6.5个单位 | B. | 增加6个单位 | C. | 减少6.5个单位 | D. | 减少6个单 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 抛物线y=$\frac{1}{4}$x2的焦点坐标为(0,1) | |
| B. | 双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{6}$=2的右顶点到其左、右焦点的距离之比为3 | |
| C. | 函数f(x)=x3-3x2+b在区间(-∞,-1)上无极值点 | |
| D. | 曲线f(x)=x3-3x2+5在点(1,f(1))处切线的倾斜角大于$\frac{3π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -9 | B. | -4 | C. | 4 | D. | 9 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com