精英家教网 > 高中数学 > 题目详情
6.已知函数$f(x)=|2x-a|+a,a∈R,g(x)=|2x-1|.
(1)若当g(x)≤3时,恒有f(x)≤6,求a的最大值;
(2)若不等式f(x)-g(x)≥3有解,求a的取值范围.

分析 (1)分别求出g(x)≤3,f(x)≤6时的x的范围,得到关于a的不等式,解出即可;
(2)由|2x-a|-|2x-1|+a≤|a-1|+a,得|a-1|+a≥3,解出即可.

解答 解:(1)当g(x)≤3时,|2x-1|≤3,求得-3≤2x-1≤3,即-1≤x≤2.…(2分)
由f(x)≤6可得|2x-a|≤6-a,即a-6≤2x-a≤6-a,即a-3≤x≤3…(3分)
根据题意可得,a-3≤-1,求得a≤2,故a的最大值为2.…(5分)
(2)f(x)-g(x)=|2x-a|-|2x-1|+a,
∵||2x-a|-|2x-1||≤|2x-a-2x+1|≤|a-1|,
∴|2x-a|-|2x-1|+a≤|a-1|+a…(7分)
不等式f(x)-g(x)≥3有解,
∴|a-1|+a≥3,…(8分)
即a-1≥3-a或a-1≤a-3
解得:a≥2或空集,
即所求的a的范围是[2,+∞).…(10分)

点评 本题考查了解绝对值不等式问题,考查分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.综合应用抛物线和双曲线的光学性质,可以设计制造反射式天文望远镜.这种望远镜的特点是,镜筒可以很短而观察天体运动又很清楚,例如,某天文仪器厂设计制造的一种反射式望远镜,其光学系统的原理如图1(中心截口示意图)所示,其中,一个反射镜PO1Q弧所在的曲线为抛物线,另一个反射镜MO2N弧所在的曲线为双曲线的一个分支,已知F1、F2是双曲线的两个焦点,其中F2同时又是抛物线的焦点,O1也是双曲线的左顶点.若在如图2所示的坐标系下,MO2N弧所在的曲线方程为标准方程,试根据图示尺寸(单位:cm),写出反射镜PO1Q弧所在的抛物线方程为y2=920(x+88).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设有一个回归方程$\widehat{y}$=6-6.5x,变量x每增加一个单位时,变量$\widehat{y}$平均(  )
A.增加6.5个单位B.增加6个单位C.减少6.5个单位D.减少6个单

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知A,B分别为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,不同两点P,Q在双曲线C上,且关于x轴对称,设直线AP,BQ的斜率分别为λ,μ,则当$\frac{16}{λμ}$+λμ取最大值时,双曲线C的离心率为(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知焦点在y轴上的椭圆E的中心是原点O,离心率为双曲线y2-$\frac{{x}^{2}}{2}$=1离心率的一半,直线y=x被椭圆E截得的线段长为$\frac{4\sqrt{10}}{5}$.直线l:y=kx+m与y轴交于点P,与椭圆E交于A,B两个相异点,且$\overrightarrow{AP}$=λ$\overrightarrow{PB}$.
(1)求椭圆E的方程;
(2)是否存在实数m,使$\overrightarrow{OA}$+λ$\overrightarrow{OB}$=4$\overrightarrow{OP}$?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题p:?x∈R,3x-3≤0.若(¬p)∧q是假命题,则命题q可以是(  )
A.抛物线y=$\frac{1}{4}$x2的焦点坐标为(0,1)
B.双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{6}$=2的右顶点到其左、右焦点的距离之比为3
C.函数f(x)=x3-3x2+b在区间(-∞,-1)上无极值点
D.曲线f(x)=x3-3x2+5在点(1,f(1))处切线的倾斜角大于$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.甲、乙两艘轮船都要停靠同一个泊位,它们可能在一昼夜的任意时刻到达.设甲、乙两艘轮船停靠泊位的时间分别是4小时和6小时,求有一艘轮船停靠泊位时必须等待一段时间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$\overrightarrow{a}$=(3,2),$\overrightarrow{b}$=(6,y),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则y等于(  )
A.-9B.-4C.4D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.复数z1=2+i,若复数z1,z2在复平面内的对应点关于虚轴对称,则z1z2=(  )
A.-5B.5C.-3+4iD.3-4i

查看答案和解析>>

同步练习册答案