精英家教网 > 高中数学 > 题目详情
5.若复数z满足z(4-i)=5+3i(i为虚数单位),则复数z的共轭复数为(  )
A.1-iB.-1+iC.1+iD.-1-i

分析 把已知等式变形,然后利用复数代数形式的乘除运算化简复数z得答案.

解答 解:由z(4-i)=5+3i,
得$z=\frac{5+3i}{4-i}=\frac{(5+3i)(4+i)}{(4-i)(4+i)}=\frac{17+17i}{17}$=1+i,
则复数z的共轭复数为:1-i.
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.以下说法错误的是(  )
A.推理一般分为合情推理和演绎推理
B.归纳是从特殊到一般的过程,它属于合情推理
C.在数学中,证明命题的正确性既能用演绎推理又能用合情推理
D.演绎推理经常使用的是由大前提、小前提得到结论的三段论推理

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.综合应用抛物线和双曲线的光学性质,可以设计制造反射式天文望远镜.这种望远镜的特点是,镜筒可以很短而观察天体运动又很清楚,例如,某天文仪器厂设计制造的一种反射式望远镜,其光学系统的原理如图1(中心截口示意图)所示,其中,一个反射镜PO1Q弧所在的曲线为抛物线,另一个反射镜MO2N弧所在的曲线为双曲线的一个分支,已知F1、F2是双曲线的两个焦点,其中F2同时又是抛物线的焦点,O1也是双曲线的左顶点.若在如图2所示的坐标系下,MO2N弧所在的曲线方程为标准方程,试根据图示尺寸(单位:cm),写出反射镜PO1Q弧所在的抛物线方程为y2=920(x+88).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.抛物线x=$\frac{1}{4}$y2的焦点坐标为(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在圆x2+y2=9上任取一点P,过点P作y轴的垂线段PD,D为垂足,当P为圆与y轴交点时,P与D重合,动点M满足$\overrightarrow{DM}$=2$\overrightarrow{MP}$;
(1)求点M的轨迹C的方程;
(2)抛物线C′的顶点在坐标原点,并以曲线C在y轴正半轴上的顶点为焦点,直线y=x+3与抛物线C′交于A、B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.甲、乙两人约定在下午 4:30:5:00 间在某地相见,且他们在 4:30:5:00 之间 到达的时刻是等可能的,约好当其中一人先到后一定要等另一人 20 分钟,若另一人仍不到则可以离去,则这两人能相见的概率是(  )
A.$\frac{3}{4}$B.$\frac{8}{9}$C.$\frac{7}{16}$D.$\frac{11}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设有一个回归方程$\widehat{y}$=6-6.5x,变量x每增加一个单位时,变量$\widehat{y}$平均(  )
A.增加6.5个单位B.增加6个单位C.减少6.5个单位D.减少6个单

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知A,B分别为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,不同两点P,Q在双曲线C上,且关于x轴对称,设直线AP,BQ的斜率分别为λ,μ,则当$\frac{16}{λμ}$+λμ取最大值时,双曲线C的离心率为(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$\overrightarrow{a}$=(3,2),$\overrightarrow{b}$=(6,y),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则y等于(  )
A.-9B.-4C.4D.9

查看答案和解析>>

同步练习册答案