精英家教网 > 高中数学 > 题目详情
13.抛物线x=$\frac{1}{4}$y2的焦点坐标为(1,0).

分析 根据题意,先将抛物线方程变形为标准方程,分析可得其焦点在x轴上,且p=2,由抛物线焦点坐标公式计算可得答案.

解答 解:抛物线的方程为x=$\frac{1}{4}$y2的,则其标准方程为y2=4x,
其焦点在x轴上,且p=2,
则其焦点坐标为(1,0);
故答案为:(1,0).

点评 本题考查抛物线的几何性质,要先将其方程变形为标准方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知;$f(n)=\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}$,则f(n+1)-f(n)=(  )
A.$\frac{1}{2n+1}+\frac{1}{2n+2}$B.$\frac{1}{2n+2}-\frac{1}{n+1}$
C.$\frac{1}{2n+2}$D.$\frac{1}{2n+1}+\frac{1}{2n+2}-\frac{1}{n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\vec a,\vec b,\vec c$是空间的一个单位正交基底,向量$\vec a+\vec b,\vec a-\vec b,\vec c$是空间的另一个基底.若向量$\vec m$在基底$\vec a,\vec b,\vec c$下的坐标为(1,2,3),则$\vec m$在基底$\vec a+\vec b,\vec a-\vec b,\vec c$下的坐标为($\frac{3}{2}$,-$\frac{1}{2}$,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{3}{x^3}-{x^2}+({1-{m^2}})x({0<m<1})$
(1)求函数f(x)的极大值点和极小值点;
(2)若f(x)恰好有三个零点,求实数m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1以及椭圆内一点P(2,1),则以P为中点的弦所在直线斜率为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知中心在原点,焦点在x轴上的椭圆的一个顶点坐标为(0,1),其离心率为$\frac{\sqrt{6}}{3}$
(1)求椭圆的标准方程;
(2)椭圆上一点P满足∠F1PF2=60°,其中F1,F2为椭圆的左右焦点,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若复数z满足z(4-i)=5+3i(i为虚数单位),则复数z的共轭复数为(  )
A.1-iB.-1+iC.1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆O:x2+y2=9,直线l1:x=6,圆O与x轴相交于点A,B(如图),点P(-1,2)是圆O内一点,点Q为圆O上任一点(异于点A、B),直线AQ与l1相交于点C.
(1)若过点P的直线l2与圆O相交所得弦长等于4$\sqrt{2}$,求直线l2的方程;
(2)设直线BQ、BC的斜率分别为kBQ、kBC,求证:kBQ•kBC为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=cos2x-$\sqrt{3}$sin2x,把y=f(x)的图象向左平移$φ({|φ|<\frac{π}{2}})$个单位后,得到的部分图象如图所示,则f(φ)的值等于(  )
A.$-\sqrt{3}$B.$\sqrt{3}$C.-1D.1

查看答案和解析>>

同步练习册答案