| A. | 无解 | B. | 有两解 | C. | 有一解 | D. | 解的个数不确定 |
分析 由a,b,sinA的值,利用正弦定理求出sinB的值,利用三角形边角关系及正弦函数的性质判断即可得到结果.
解答 解:∵在△ABC中,a=18,b=24,A=45°,
∴由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$,
得:sinB=$\frac{bsinA}{a}$=$\frac{24×\frac{\sqrt{2}}{2}}{18}=\frac{2\sqrt{2}}{3}$>$\frac{\sqrt{2}}{2}$,
∵a<b,∴A<B,
∴B的度数有两解,
则此三角形有两解.
故选:B.
点评 本题考查了正弦定理,正弦函数的性质,熟练掌握正弦定理是解本题的关键,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | $\frac{9}{4}$ | D. | $\frac{9}{8}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com