| A. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{8}$=1 | B. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1 | C. | $\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{6}$=1 |
分析 根据题意,作出椭圆的图形分析可得|AB|+|AF2|+|BF2|=|AF1|+|BF1|+|AF2|+|BF2|=4a=16,解可得a的值,又由其离心率可得e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,解可得c的值,计算可得b的值,将a、b的值代入椭圆标准方程即可得答案.
解答
解:根据题意,如图:
△ABF2的周长为16,则有|AB|+|AF2|+|BF2|=|AF1|+|BF1|+|AF2|+|BF2|=4a=16,则a=4,
又由其离心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,则c=2$\sqrt{2}$,b2=a2-c2=16-8=8;
又由其焦点在x轴上,则其标准方程为$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{8}$=1;
故选:A.
点评 本题考查椭圆的几何性质,关键是由△ABF2的周长求出a的值.属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 22 | B. | 16 | C. | 12 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)的最小正周期为2π | |
| B. | 函数f(x)在区间$[\frac{3π}{4},π]$上单调递增 | |
| C. | 函数f(x)的图象关于直线$x=-\frac{7π}{12}$对称 | |
| D. | 函数f(x)的图象关于点$(\frac{7π}{12},0)$对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 双曲线 | B. | 椭圆 | C. | 圆 | D. | 直线 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com