精英家教网 > 高中数学 > 题目详情
10.在所有棱长都相等的三棱锥A-BCD中,P、Q分别是AD、BC的中点,点R在平面ABC内运动,若直线PQ与直线DR成30°角.则R在平面ABC内的轨迹是(  )
A.双曲线B.椭圆C.D.直线

分析 由题意,平面ABC截圆锥面,截面与旋转轴的夹角大于母线与旋转轴的夹角,轨迹为椭圆,即可得出结论.

解答 解:由题意,平面ABC截圆锥面,截面与旋转轴的夹角大于母线与旋转轴的夹角,轨迹为椭圆,
即R在平面ABC内的轨迹是椭圆.
故选B.

点评 本题考查平面ABC截圆锥面,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.在平面直角坐标系xoy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为$\frac{\sqrt{2}}{2}$,与过F1的直线交于A,B两点,且△ABF2的周长为16,那么椭圆C的方程为(  )
A.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{8}$=1B.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1C.$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{6}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,C1的参数方程为$\left\{{\begin{array}{l}{x=1-\frac{{\sqrt{2}}}{2}t}\\{y=1+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,C2的极坐标方程ρ2-2ρcosθ-3=0.
(1)说明C2是哪种曲线,并将C2的方程化为普通方程;
(2)C1与C2有两个公共点A,B,定点P的极坐标$({\sqrt{2},\frac{π}{4}})$,求线段AB的长及定点P到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数$f(x)=\frac{{{2^x}+1}}{{{2^x}-1}}•cosx$的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{\frac{{2}^{x}+2}{2},x≤1}\\{|lo{g}_{2}(x-1)|,x>1}\end{array}\right.$,则函数F(x)=f[f(x)]-2f(x)-$\frac{3}{2}$的零点个数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如果α为小于360°的正角,且这个角的7倍角的终边与这个角的终边重合,则这样的角α是否存在?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设三棱锥PABC的顶点P在平面ABC上的射影是H,给出下列命题:
①若PA⊥BC,PB⊥AC,则H是△ABC的垂心;
②若PA,PB,PC两两互相垂直,则H是△ABC的垂心;
③若PA=PB=PC,则H是△ABC的外心.
请把正确命题的序号填在横线上:①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“a=2”是“ax+y-2=0与直线2x+(a-1)y+4=0平行”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知i为虚数单位,复数z满足z(1-i)=1+i,则z的共轭复数是(  )
A.1B.-1C.iD.-i

查看答案和解析>>

同步练习册答案