精英家教网 > 高中数学 > 题目详情
15.给出下列4个命题,其中正确的个数是(  )
①若“命题p∧q为真”,则“命题p∨q为真”;
②命题“?x>0,x-lnx>0”的否定是“?x>0,x-lnx≤0”;
②“tanx>0”是“sin2x>0”的充要条件;
④计算:9192除以100的余数是1.
A.1个B.2个C.3个D.4个

分析 利用复合命题的真假判断①的正误;命题的否定判断②的正误;充要条件判断③的正误.二项式定理判断④的正误.

解答 解:①若“命题p∧q为真”,则p,q都为真命题,所以“命题p∨q为真”,故正确;
②命题“?x>0,x-lnx>0”的否定是“?x>0,x-lnx≤0”,满足命题的否定形式,正确;
③“tanx>0”可得x∈(kπ,kπ+$\frac{π}{2}$),k∈Z;“sin2x>0“可得2x∈(2kπ,2kπ+π),即x∈(kπ,kπ+$\frac{π}{2}$),k∈Z;所以“tanx>0”是“sin2x>0“的充要条件.正确;
④由于9192=(100-9)92=C920•10092•(-9)0+…+C9291•1001•(-9)91+C9292•1000•(-9)92
在此展开式中,除了最后一项外,其余的项都能被100整除,故9192除以100的余数等价于C9292•1000•(-9)92=992除以100的余数,而992=(10-1)92=C920•1092•(-1)0+…+C9291•101•(-1)91+C9292•100•(-9)92,故992除以100的余数等价于C9291•101•(-1)91+C9292•100•(-9)92除以100的余数,而C9291•101•(-1)91+C9292•100•(-9)92=-919=-10×100+81,故9192除以100的余数是81.不正确.
故选:C.

点评 本题考查命题的真假的判断与应用,考查充要条件,命题的否定,二项式定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.设{an}是公差不为0的等差数列,a1=4且a1,a3,a6成等比数列,则{an}的前n项和Sn=$\frac{{n}^{2}+7n}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(cosx)=2cos2x,则f(sin525°)等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知有一条抛物线${y}^{2}=\frac{8e}{3}x$,且在其上存在三点A,B,D,且三角形ABD的重心恰好为抛物线的焦点,则当三角形ABD面积为最大时,三角形的三条边与x轴交于两点,记横坐标较大的点的横坐标为m,且记函数f(x)=xlnx;g(x)=k[k∈[-m,+∞)].
(1)若f(x)=g(x)这组方程存在两根x1,x2,试求x1x2的取值范围.
(2)在(1)的条件下试求x1+x2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等比数列{an}的各项都为正数,其前n项和为S,且S3=42,16a2•a6=a3•a7
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{(lo{g}_{2}{a}_{n})•(lo{g}_{2}{a}_{n+1})}$,数列{bn}的前n项和为Tn,求证:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,已知在五棱锥P-ABCDE底面ABCDE为凸五边形,AE=DC=2,AB=BC=3,DE=1,∠EAB=∠BCD=∠CDE=∠DEA=120°,F为AE上的点,且AF=$\frac{3}{2}$,平面PAE与底面ABCDE垂直.
求证:(1)BC∥平面PAE;(2)PA⊥FC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用平面区域表示下列不等式组.
(1)$\left\{\begin{array}{l}{x≥y}\\{3x+4y-12<0}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y+1>0}\\{x≤3}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列等式恒成立的是(  )
A.$\overrightarrow{AB}$+$\overrightarrow{BA}$=0B.$\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{BC}$C.($\overrightarrow{a}•\overrightarrow{b}$)$•\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow{b}•\overrightarrow{c}$)D.($\overrightarrow{a}$+$\overrightarrow{b}$)$•\overrightarrow{c}$=$\overrightarrow{a}•\overrightarrow{c}$+$\overrightarrow{b}•\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,△ABC中,O是BC的中点,AB=AC,AO=2OC=2,将△BAO沿AO折起,使B点到达B′点.
(Ⅰ)求证:AO⊥平面B′OC;
(Ⅱ)当三棱锥B′-AOC的体积最大时,试问在线段B′A上是否存在一点P,使CP与平面B′OA所成的角的正弦值为$\frac{{\sqrt{6}}}{3}$?若存在,求出点P的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案