精英家教网 > 高中数学 > 题目详情
2.${∫}_{0}^{\frac{π}{3}}$(1-2sin2$\frac{θ}{2}$)dθ=$\frac{\sqrt{3}}{2}$.

分析 先根据二倍角公式化简,再根据的定积分的计算法则计算即可.

解答 解:${∫}_{0}^{\frac{π}{3}}$(1-2sin2$\frac{θ}{2}$)dθ=${∫}_{0}^{\frac{π}{3}}$cosθdθ=sinθ|${\;}_{0}^{\frac{π}{3}}$=$\frac{\sqrt{3}}{2}$,
故答案为:$\frac{\sqrt{3}}{2}$

点评 本题考查了定积分的计算,关键是求出原函数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知在△ABC中,角A,B,C的对边分别是a,b,c,且cos(2B+2C)-3cos(B+C)=1.
(1)求角A的大小;
(2)若a=2,△ABC的面积S=$\frac{\sqrt{3}}{2}$,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知x>0,y>0,xy-x-2y+$\frac{3}{2}$=0,则x+2y的取值范围是(  )
A.(0,2]∪[6,+∞)B.(0,$\frac{3}{2}$]∪[6,+∞)C.($\frac{3}{2}$,2]∪[6,+∞)D.[6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sinα=-$\frac{8}{17}$,且角α是第三象限的角,求cosα,tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=2ax2-x3(a>1)在区间(0,1]上是增函数,则实数a的取值范围是[$\frac{3}{4},+∞$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=-x2+3x-a,g(x)=2x-x2,若f[g(x)]≥0对x∈[0,1]恒成立,则实数a的范围是(  )
A.(-∞,2]B.(-∞,e]C.(-∞,ln2]D.[0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知两个不共线的向量$\overrightarrow{OA}$和$\overrightarrow{OC}$,向量$\overrightarrow{OB}$与$\overrightarrow{OA}$关于向量$\overrightarrow{OC}$对称,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,则$\overrightarrow{b}$用$\overrightarrow{a}$和$\overrightarrow{c}$表示为(  )
A.2($\overrightarrow{a}$•$\overrightarrow{c}$)$\overrightarrow{c}$-$\overrightarrow{a}$B.$\frac{2(\overrightarrow{a}•\overrightarrow{c})}{|\overrightarrow{c}|}•\overrightarrow{c}-\overrightarrow{a}$C.$\frac{2(\overrightarrow{a}•\overrightarrow{c})}{|\overrightarrow{c}|}-\overrightarrow{a}$D.$\frac{2(\overrightarrow{a}•\overrightarrow{c})}{|\overrightarrow{c}{|}^{2}}•\overrightarrow{c}-\overrightarrow{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,直线l的参数方程为 $\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$.(t为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=acosθ,(a>0)
(Ⅰ) 求直线l和曲线C的普通方程;
(Ⅱ) 若直线l与曲线C相切,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=ln(-x2-2x+8)的单调递减区间是(  )
A.(-∞,-1)B.(-1,2)C.(-4,-1)D.(-1,+∞)

查看答案和解析>>

同步练习册答案