分析 (I)消参数得到直线l的普通方程,对ρ=acosθ两边平方得出曲线C的普通方程;
(II)根据直线与圆相切得出圆心到直线的距离等于半径,列方程解出a.
解答 解:(I)∵$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$,∴x=1+y,即x-y-1=0.∴直线l的普通方程为x-y-1=0.
∵ρ=acosθ,∴ρ2=aρcosθ,∴曲线C的普通方程为x2+y2-ax=0.即(x-$\frac{a}{2}$)2+y2=$\frac{{a}^{2}}{4}$.
(II)由(1)知曲线C的圆心为($\frac{a}{2}$,0),半径为$\frac{a}{2}$.
∵直线l与曲线C相切,∴$\frac{|\frac{a}{2}-1|}{\sqrt{2}}=\frac{a}{2}$,解得a=2$\sqrt{2}$-2.
点评 本题考查了参数方程,极坐标方程与普通方程的转化,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$<a<2$\sqrt{3}$ | B. | 2$\sqrt{2}$<a<$\frac{7}{2}$ | C. | 3<a<$\frac{7}{2}$ | D. | 3<a<2$\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com