分析 作出不等式组对应的平面区域,利用z的几何意义,即可得到结论.
解答
解:作出不等式组对应的平面区域如图:
z=$\frac{4x+y-32}{x-6}$=4+$\frac{y}{x-6}$的几何意义为区域内的点到D(6,0)的斜率与4之和,
由图象可知AD的斜率最大,
由$\left\{\begin{array}{l}{x=1}\\{x-4y=-3}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,即A(1,1),
则$\frac{y}{x-6}$的最大值为$\frac{1}{1-6}$=-$\frac{1}{5}$,
则$\frac{4x+y-32}{x-6}$的最大值是:4-$\frac{1}{5}$=$\frac{19}{5}$
故答案为:$\frac{19}{5}$.
点评 本题主要考查线性规划的应用以及直线斜率的求解,利用数形结合是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2015}{2016}$ | B. | $\frac{4032}{2017}$ | C. | $\frac{4030}{2016}$ | D. | $\frac{2016}{2017}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 直角三角形 | B. | 锐角三角形 | C. | 钝角三角形 | D. | 等边三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1} | B. | {1,2} | C. | {0,1,2,3} | D. | {-1,0,1,2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1) | B. | (-∞,1] | C. | ($\frac{1}{2}$,1) | D. | ($\frac{1}{2}$,1] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com