精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=x3+ax2+bx+c满足f'(0)=4,f'(-2)=0。

(1)求a,b的值及曲线y=f(x)在点(0,f(0))处的切线方程;

(2)若函数f(x)有三个不同的零点,求c的取值范围。

【答案】(1)a=b=4,y=4x+c;(2)(0, ).

【解析】试题分析:(1)求出f(x)的导数,由f'(0)=4,f'(-2)=0求得a,b的值,再求得切线的斜率和切点,进而得到所求切线的方程;
(2)由f(x)=0,可得-c=x3+4x2+4x,由g(x)=x3+4x2+4x,求得导数,单调区间和极值,由-c介于极值之间,解不等式即可得到所求范围.

试题解析:

(1)函数f(x)=x3+ax2+bx+c的导数为f′(x)=3x2+2ax+b

根据题意得: ,解得.

可得y=f(x)在点(0,f(0))处的切线斜率为k=f′(0)=b=4,

切点为(0,c),可得切线的方程为y=4x+c

(2)由(1)f(x)=x3+4x2+4x+c

f(x)=0,可得c= x3+4x2+4x

g(x)= x3+4x2+4x的导数g′(x)=3x2+8x+4=(x+2)(3x+2)

x<2,g′(x)>0,g(x)递增;

2<x<,g′(x)<0,g(x)递减.

即有g(x)x=2处取得极大值,且为0;

g(x)x=处取得极小值,且为

由函数f(x)有三个不同零点,可得<c<0

解得0<c<

c的取值范围是(0, ).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求函数的单调增区间;

(2)若曲线在点处的切线与曲线有且只有一个公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】满足的正整数对共有______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|3≤≤27},B={x|>1}.

(1)分别求A∩B,()∪A;

(2)已知集合C={x|1<x<a},若CA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的离心率为 ,顶点A(a,0),B(0,b),中心O到直线AB的距离为
(1)求椭圆C的方程;
(2)设椭圆C上一动点P满足: ,其中M,N是椭圆C上的点,直线OM与ON的斜率之积为﹣ ,若Q(λ,μ)为一动点,E1(﹣ ,0),E2 ,0)为两定点,求|QE1|+|QE2|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD与ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点求证:

1BE平面DMF;

2平面BDE平面MNG

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,的中点,的中点.证明:直线平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在坐标原点,焦点在轴上,且过点.

(I)求的标准方程;

(Ⅱ)若为坐标原点, 的焦点,过点且倾斜角为的直线 两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1:(x+1)2+y2=25,圆C2:(x﹣1)2+y2=1,动圆C与圆C1和圆C2均内切.

(1)求动圆圆心C的轨迹E的方程;
(2)点P(1,t)为轨迹E上点,且点P为第一象限点,过点P作两条直线与轨迹E交于A,B两点,直线PA,PB斜率互为相反数,则直线AB斜率是否为定值,若是,求出定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案