精英家教网 > 高中数学 > 题目详情
在计算1×2+2×3+3×4+…+n(n+1)时,某同学想到了如下一种方法:改写第k项:k(k+1)=
1
3
[k(k1)(k+2)-(k-1)k(k+1)],再相加求和得1×2+2×3+3×4…+n(n+1)=
1
3
[n(n+1)(n+2)],类比上述方法请计算“1×2×3+2×3×4+…+n(n+1)(n+2)”,其结果为
 
考点:进行简单的合情推理
专题:计算题,推理和证明
分析:利用k(k+1)(k+2)=
1
4
[k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)],再相加求和得结论.
解答: 解:k(k+1)(k+2)=
1
4
[k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)],
∴相加求和得1×2×3+2×3×4+…+n(n+1)(n+2)=
1
4
n(n+1)(n+2)(n+3).
故答案为:
1
4
n(n+1)(n+2)(n+3).
点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
ax+b
x2+1
(a>0)
(Ⅰ)求证:f(x)必有两个极值点,一个是极大值点,-个是极小值点;
(Ⅱ)设f(x)的极小值点为α,极大值点为β,f(α)=-1,f(β)=1,求a、b的值;
(Ⅲ)在(Ⅱ)的条件下,设g(x)=f(ex),若对于任意实数x,g(x)≤
2
2+mx2
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠C=90°,BC=2,则
AB
BC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三个函数f(x)=2x+x,g(x)=x-2,h(x)=log2x+x的零点依次为r,s,t,则r,s,t的大小关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y=
1
2
x2+1在点(2,3)处的切线与圆x2+(y-m)2=5(m>0)相切,则m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosα,1,sinα),
b
=(sinα,1,cosα),则向量
a
+
b
a
-
b
的夹角是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
21-x-a x≤0
f(x-1) x>0
,若f(x)=x有且仅有两个实数根,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=kax-a-x(a>0且a≠1)在(-∞,+∞)上既是奇函数又是增函数,则函数g(x)=loga(x+k)的图象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

若2a=3b=6c=t(t>1),则a,b,c之间一定满足的关系是(  )
A、3a+2b=c2
B、a×b=c
C、
1
a
+
1
b
=
1
c
D、a3+b2=c

查看答案和解析>>

同步练习册答案