【题目】已知函数
(1)求函数的极值;
(2)求证: ;
(3),若对于任意的,恒有成立,求的取值范围.
【答案】(1)见解析; (2).
【解析】试题分析:(1)由题意,得,得出函数的单调性,即可求得函数的极值;
(2)由(1)知的极小值即为最小值,推得,进而可证得结论;
(3)由题意的解析式,求得,令,求得,利用得存在,使,且在上递减, 在上递增,求得函数的的最小值,再转化为函数,利用导数的单调性,即可求解实数的取值范围.
试题解析:
(1)由可得,函数在单减,在单增,所以函数的极值在取得,为极小值;
(2)根据(1)知的极小值即为最小值,即可推得当且仅当取等,所以,
所以有
(3) ∴
令,则,∴在上递增
∵,当时, ∴存在,使,且在上递减, 在上递增
∵ ∴,即
∵对于任意的,恒有成立
∴ ∴
∴ ∴ ∴,又,
∵ ∴,令, ,显然在单增,而, ,
∴ ∴.
科目:高中数学 来源: 题型:
【题目】新冠肺炎疫情期间,为了减少外出聚集,“线上买菜”受追捧.某电商平台在地区随机抽取了位居民进行调研,获得了他们每个人近七天“线上买菜”消费总金额(单位:元),整理得到如图所示频率分布直方图.
(1)求的值;
(2)从“线上买菜”消费总金额不低于元的被调研居民中,随机抽取位给予奖品,求这位“线上买菜”消费总金额均低于元的概率;
(3)若地区有万居民,该平台为了促进消费,拟对消费总金额不到平均水平一半的居民投放每人元的电子补贴.假设每组中的数据用该组区间的中点值代替,试根据上述频率分布直方图,估计该平台在地区拟投放的电子补贴总金额.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三角形内,我们将三条边的中线的交点称为三角形的重心,且重心到任一顶点的距离是到对边中点距离的两倍类比上述结论:在三棱锥中,我们将顶点与对面重心的连线段称为三棱锥的“中线”,将三棱锥四条中线的交点称为它的“重心”,则棱锥重心到顶点的距离是到对面重心距离的______倍
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据下列条件解三角形,有两解的有( )
A.已知a,b=2,B=45°B.已知a=2,b,A=45°
C.已知b=3,c,C=60°D.已知a=2,c=4,A=45°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下命题为假命题的是( )
A. “若m>0,则方程x2+x-m=0有实数根”的逆命题
B. “面积相等的三角形全等”的否命题
C. “若xy=1,则x,y互为倒数”的逆命题
D. “若A∪B=B,则AB”的逆否命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点曲线的一个焦点, 为坐标原点,点为抛物线上任意一点,过点作轴的平行线交抛物线的准线于,直线交抛物线于点.
(Ⅰ)求抛物线的方程;
(Ⅱ)求证:直线过定点,并求出此定点的坐标.
【答案】(I);(II)证明见解析.
【解析】试题分析:(Ⅰ)将曲线化为标准方程,可求得的焦点坐标分别为,可得,所以,即抛物线的方程为;(Ⅱ)结合(Ⅰ),可设,得,从而直线的方程为,联立直线与抛物线方程得,解得,直线的方程为,整理得的方程为,此时直线恒过定点.
试题解析:(Ⅰ)由曲线,化为标准方程可得, 所以曲线是焦点在轴上的双曲线,其中,故, 的焦点坐标分别为,因为抛物线的焦点坐标为,由题意知,所以,即抛物线的方程为.
(Ⅱ)由(Ⅰ)知抛物线的准线方程为,设,显然.故,从而直线的方程为,联立直线与抛物线方程得,解得
①当,即时,直线的方程为,
②当,即时,直线的方程为,整理得的方程为,此时直线恒过定点, 也在直线的方程为上,故直线的方程恒过定点.
【题型】解答题
【结束】
21
【题目】已知函数,
(Ⅰ)当时,求函数的单调递减区间;
(Ⅱ)若时,关于的不等式恒成立,求实数的取值范围;
(Ⅲ)若数列满足, ,记的前项和为,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1),在平面六边形中,四边形是矩形,且, , ,点, 分别是, 的中点,分别沿直线, 将, 翻折成如图(2)的空间几何体.
(Ⅰ)利用下列结论1或结论2,证明: 、、、四点共面;
结论1:过空间一点作已知直线的垂面,有且仅有一个.
结论2:过平面内一条直线作该平面的垂面,有且仅有一个.
(Ⅱ)若二面角和二面角都是,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是: ,,,,.
(1)求图中的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数与数学成绩相应分数段的人数之比如下表所示,求数学成绩在之外的人数.
分数段 |
| |||
X:y | 1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com