精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=3sin(2x+$\frac{π}{4}$)(x∈R).
(1)求函数f(x)的最小正周期和初相;
(2)若f($\frac{α}{2}$)=$\frac{9}{5}$,α∈($\frac{π}{4}$,$\frac{3π}{4}$),求cosα的值.

分析 (1)正弦函数y=Asin(ωx+θ)的周期T=$\frac{2π}{|ω|}$,初相是φ;
(2)把f($\frac{α}{2}$)=$\frac{9}{5}$代入函数解析式求得sin(α+$\frac{π}{4}$)=$\frac{3}{5}$,然后利用公式sin2α+cos2α=1和α的取值范围得到cos(α+$\frac{π}{4}$)=-$\frac{4}{5}$,所以cos=cos[(α+$\frac{π}{4}$)-$\frac{π}{4}$],利用两角和与差的余弦将其展开,并代入相关数值进行求值即可.

解答 解:(1)函数f(x)的最小正周期T=$\frac{2π}{2}$=π,初相φ=$\frac{π}{4}$;
(2)由f($\frac{α}{2}$)=$\frac{9}{5}$,得
3sin(α+$\frac{π}{4}$)=$\frac{9}{5}$,则sin(α+$\frac{π}{4}$)=$\frac{3}{5}$,
又α∈($\frac{π}{4}$,$\frac{3π}{4}$),
∴α+$\frac{π}{4}$∈($\frac{π}{2}$,π),
∴cos(α+$\frac{π}{4}$)=-$\frac{4}{5}$
因此,cos=cos[(α+$\frac{π}{4}$)-$\frac{π}{4}$]=cos(α+$\frac{π}{4}$)cos$\frac{π}{4}$+sin(α+$\frac{π}{4}$)sin$\frac{π}{4}$=-$\frac{4}{5}$×$\frac{\sqrt{2}}{2}$+$\frac{3}{5}$×$\frac{\sqrt{2}}{2}$=-$\frac{\sqrt{2}}{10}$.

点评 本题考查了正弦函数的图象,熟记公式的解题的关键,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.将函数y=sin($2x-\frac{π}{3})$的图象向左平移φ(φ>0)个单位后,所得到的图象对应的函数为奇函数,则φ的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在《爸爸去哪儿》第二季第四期中,假如村长给6位“萌娃”布置一项到A、B、C三个位置搜寻空投食物的任务,每两位“萌娃”搜寻一个位置.考虑到位置远近及年龄大小,Grace不去较远的A位置,多多不去较近的C位置,则不同的搜寻安排方案有(  )
A.20 种B.40 种C.42种D.48种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某正三棱柱的三视图如图所示,其中正(主)视图是正方形,该正三棱柱的侧视图的面积是(  )
A.2$\sqrt{3}$B.4C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.将8本书分给3个人,每人至少一本,请问有几种分法?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.为了得到函数y=3cos2x的图象,只需把函数$y=3sin(2x+\frac{π}{6})$的图象上所有的点(  )
A.向右平移$\frac{π}{3}$个单位B.向右平移$\frac{π}{6}$个单位
C.向左平移$\frac{π}{3}$个单位D.向左平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a,b∈R,则“ab=4”是“直线2x+ay-1=0与bx+2y+1=0平行”的(  )
A.充分必要条件B.充分而不必要条件
C.必要而不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.a的值由如图程序框图算出,则二项式($\sqrt{x}$-$\frac{a}{x}$)9展开式的常数项为(  )
A.T4=53×${C}_{9}^{3}$B.T6=-55×${C}_{9}^{5}$C.T5=74×${C}_{9}^{4}$D.T4=-73×${C}_{9}^{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=2x,f(a+3)=8,g(x)=$\frac{{x}^{2}}{x-a}$,若g(2b)=4,则b值为2.

查看答案和解析>>

同步练习册答案