精英家教网 > 高中数学 > 题目详情
9.为了得到函数y=3cos2x的图象,只需把函数$y=3sin(2x+\frac{π}{6})$的图象上所有的点(  )
A.向右平移$\frac{π}{3}$个单位B.向右平移$\frac{π}{6}$个单位
C.向左平移$\frac{π}{3}$个单位D.向左平移$\frac{π}{6}$个单位

分析 由条件利用y=Asin(ωx+φ)的图象变换规律、诱导公式,可得结论.

解答 解:把函数$y=3sin(2x+\frac{π}{6})$的图象上所有的向左平移$\frac{π}{6}$个单位,
可得函数y=3sin[2(x+$\frac{π}{6}$)+$\frac{π}{6}$]=3sin(2x+$\frac{π}{2}$)=3cos2x的图象,
故选:D.

点评 本题主要考查诱导公式的应用,利用了y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知定义在R的函数f(x)满足:
①f(-x)=f(x);
②f(x-2)=f(x);
③?x1,x2∈[0,1](x1≠x2),$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}$>0.
则(  )
A.函数f(x)的图象关于直线x=$\frac{1}{2}$对称
B.函数f(x)的图象关关于点($\frac{1}{2}$,0)对称
C.函数f(x+1)在区间[2013,2014]内单调递增
D.函数f(x+1)的最小正周期为1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,为测量山高MN,选择A和另一座山的山顶|PA|为测量观测点.从△ABC点测得MB=MC点的俯角∠NMA=30°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°已知山高BC=200m,则山高MN=300m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设x∈R,向量$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(1,-2),且|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{5}$,则向量 $\overrightarrow a,\overrightarrow b$夹角的所有可能的余弦值之积为$\frac{\sqrt{5}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=3sin(2x+$\frac{π}{4}$)(x∈R).
(1)求函数f(x)的最小正周期和初相;
(2)若f($\frac{α}{2}$)=$\frac{9}{5}$,α∈($\frac{π}{4}$,$\frac{3π}{4}$),求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设等差数列{an}的公差d不为0.若a1=18,且a1,a4,a8成等比数列,则公差d=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若实数x,y满足x≥y>0,且$x=4\sqrt{y}+2\sqrt{x-y}$,则x的取值范围是(4,20].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=cosx(cosx+sinx)的值域为[$\frac{1}{2}$-$\frac{\sqrt{2}}{2}$,$\frac{1}{2}$+$\frac{\sqrt{2}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知{an}是公比q>0的等比数列,a1+a2+a3=26,a5+a6+a7=2106,则首项a1=(  )
A.1B.2C.$\frac{2}{7}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案