分析 在△ABC中,求出,利用正弦定理求出AM,然后在Rt△AMN中求解MN即可.
解答 解:在△ABC中,∵∠CAB=45°,∠ABC=90°,BC═200m.
∴$AC=\frac{200}{sin45°}=200\sqrt{2}$,
在△AMC中,∵∠MAC=75°,∠MCA=60°,∴∠AMC=45°,
由正弦定理可得$\frac{AM}{sin∠ACM}=\frac{AC}{sin∠AMC}$,即$\frac{AM}{sin60°}=\frac{{100\sqrt{2}}}{sin45°}$,
解得$AM=200\sqrt{3}$,
在Rt△AMN中,MN=AM•sin∠MAN=$200\sqrt{3}×sin60°$=300(m).
故答案为:300.
点评 本题考查正弦定理以及三角形的解法,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c<a<b | B. | b<a<c | C. | a<b<c | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(a)<f(b)<0 | B. | f(b)<f(a)<0 | C. | 0<f(a)<f(b) | D. | 0<f(b)<f(a) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20 种 | B. | 40 种 | C. | 42种 | D. | 48种 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | 4 | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向右平移$\frac{π}{3}$个单位 | B. | 向右平移$\frac{π}{6}$个单位 | ||
| C. | 向左平移$\frac{π}{3}$个单位 | D. | 向左平移$\frac{π}{6}$个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | -4 | C. | -1 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com