精英家教网 > 高中数学 > 题目详情
14.一个正四棱锥的内切球半径为1,则此正四棱锥体积的最小值为$\frac{32}{3}$.

分析 先求出正四棱锥体积,再利用导数知识求解即可.

解答 解:设正四棱锥的高为h,底边长为2a,则斜高为$\sqrt{{a}^{2}+{h}^{2}}$,
∵正四棱锥的内切球半径为1,
∴由△POG∽△PFE可得$\frac{1}{h-1}=\frac{a}{\sqrt{{a}^{2}+{h}^{2}}}$,
∴a2=$\frac{{h}^{2}}{{h}^{2}-2h}$
∴正四棱锥体积V=$\frac{1}{3}×4{a}^{2}h$=$\frac{4}{3}$×$\frac{{h}^{3}}{{h}^{2}-2h}$,
V′=$\frac{{h}^{3}(h-4)}{({h}^{2}-2h)^{2}}$,
∴0<h<4时,V′<0;h>4时,V′>0,
∴h=4时,正四棱锥体积取得最小值,最小值为$\frac{32}{3}$.
故答案为:$\frac{32}{3}$.

点评 本题主要考查球与正四棱锥的关系,考查导数知识的运用,正确求出正四棱锥体积是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=x2+$\frac{2}{x}$-alnx(a>0)有唯一的零点x0,且m<x0<n(m,n为相邻整数),则m+n的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某校高一某班的一次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图,据此解答如下问题;
(1)求分数在[50,60)的频率及全班的人数;
(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;
(3)根据频率分布直方图,估计该班数学成绩的平均数与中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图所示:

若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[136,151]上的运动员人数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与y轴交于B1,B2两点,F1为椭圆C的左焦点,且△F1B1B2是边长为2的等边三角形.
(1)求椭圆C的方程;
(2)设直线x=my+1与椭圆C交于P,Q两点,点P关于x轴的对称点为P1(P1与Q不重合),则直线P1Q与x轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在直角梯形ABCD中,AD∥BC,∠A=90°,AB=2AD,若将△ABD沿直线BD折成△A′BD,使得A′D⊥BC,则直线A′B与平面BCD所成角的正弦值是$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在数列{an}中,a1=1,an•an+1=$\frac{n+2}{n}$cos(n+1)π,设Tn为数列{an}的前n项的积,则T99=-50.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在等差数列{an}中,a1=23,d=-2,求数列{|an|}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在(x2+$\frac{1}{\sqrt{x}}$)5展开式中,常数项为5.

查看答案和解析>>

同步练习册答案