精英家教网 > 高中数学 > 题目详情
9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与y轴交于B1,B2两点,F1为椭圆C的左焦点,且△F1B1B2是边长为2的等边三角形.
(1)求椭圆C的方程;
(2)设直线x=my+1与椭圆C交于P,Q两点,点P关于x轴的对称点为P1(P1与Q不重合),则直线P1Q与x轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.

分析 (1)由题意可得|F1B1|=$\sqrt{{c}^{2}+{b}^{2}}$=a,由△F1B1B2是边长为2的等边三角形,可得a=2,b=1,进而得到椭圆方程;
(2)把直线方程与椭圆方程联立消去y,设出P,Q的坐标,则P1的坐标可推断出,利用韦达定理表示出y1+y2和y1y2,进而可表示出P1Q的直线方程,把y=0代入求得x的表达式,把x1=my1+1,x2=my2+1代入求得x=4,进而可推断出直线P1Q与x轴交于定点(4,0).

解答 解:(1)由题意可得B1(0,b),B2(0,-b),F1(-c,0),
|F1B1|=$\sqrt{{c}^{2}+{b}^{2}}$=a,
由△F1B1B2是边长为2的等边三角形,可得a=2,
2b=2,即b=1,
则有椭圆的方程为$\frac{{x}^{2}}{4}$+y2=1;
(2)由$\left\{\begin{array}{l}{x=my+1}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,
得(my+1)2+4y2=4,即(m2+4)y2+2my-3=0,m≠0,
设P(x1,y1),Q(x2,y2
则P1(x1,-y1),
且y1+y2=-$\frac{2m}{4+{m}^{2}}$,y1y2=-$\frac{3}{4+{m}^{2}}$,
经过点P1(x1,-y1),Q(x2,y2)的直线方程为$\frac{y+{y}_{1}}{{y}_{2}+{y}_{1}}$=$\frac{x-{x}_{1}}{{x}_{2}-{x}_{1}}$,
令y=0,则x=$\frac{{x}_{2}-{x}_{1}}{{y}_{2}+{y}_{1}}$•y1+x1=$\frac{{x}_{1}{y}_{2}+{x}_{2}{y}_{1}}{{y}_{1}+{y}_{2}}$,
又x1=my1+1,x2=my2+1.
当y=0时,x=$\frac{(m{y}_{1}+1){y}_{2}+(m{y}_{2}+1){y}_{1}}{{y}_{1}+{y}_{2}}$=$\frac{2m{y}_{1}{y}_{2}}{{y}_{1}+{y}_{2}}$+1
=$\frac{-\frac{6m}{4+{m}^{2}}}{\frac{-2m}{4+{m}^{2}}}$+1=3+1=4.
这说明,直线P1Q与x轴交于定点(4,0).

点评 本题主要考查了椭圆的标准方程的求法,注意运用方程的思想,考查直线与椭圆的位置关系,注意运用联立直线和椭圆方程,运用韦达定理和直线恒过定点,考查了学生基础知识的综合运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知m∈R,i为虚数单位,则“m=1”是“复数z=m2-1+(m+1)i为纯虚数”的(  )
A.充分但不必要条件B.必要但不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b),满足f′(x1)=f′(x2)=$\frac{f(a)-f(b)}{a-b}$,则称数x1,x2为[a,b]上的“对望数”,函数f(x)为[a,b]上的“对望函数”,给出下列四个命题:
(1)二次函数f(x)=x2+mx+n在任意区间[a,b]上都不可能是“对望函数”;
(2)函数f(x)=$\frac{1}{3}$x3-x2+2是[0,2]上的“对望函数”;
(3)函数f(x)=x+sinx是[$\frac{π}{6}$,$\frac{11π}{6}$]上的“对望函数”;
(4)f(x)为[a,b]上的“对望函数”,则f(x)在[a,b]上不单调
其中正确命题的序号为(1),(2),(4)(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=sin(2x+$\frac{π}{6}$),x∈R.
(1)求函数f(x)的最小正周期.
(2)单调递增区间.
(3)用“五点作图”画出它某一周期的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等比数列{an}中,若an>0,且a3,a7是x2-32x+64=0的两根,则log2a1+log2a2+log2a3+…+log2a9=(  )
A.27B.36C.18D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个正四棱锥的内切球半径为1,则此正四棱锥体积的最小值为$\frac{32}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在平面直角坐标系中,角α的顶点与原点重合,始边与x轴非负半轴重合,终边过点P(-2,1),则sin2α的值为$-\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某城镇的人口数量不断增长,每年以2%的速度递增,假设该城镇设原来人口为1万
(1)求该城镇人口数量随时间增长的函数关系式;
(2)求10年后该城镇的人口数.(精确到0.001万)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}中.
(1)a1=$\frac{3}{2}$,d=-$\frac{1}{2}$,Sn=-15,求n及a12
(2)a1=1,an=-512,Sn=-1022,求d;
(3)S5=24,求a2+a4

查看答案和解析>>

同步练习册答案