精英家教网 > 高中数学 > 题目详情
19.已知等差数列{an}中.
(1)a1=$\frac{3}{2}$,d=-$\frac{1}{2}$,Sn=-15,求n及a12
(2)a1=1,an=-512,Sn=-1022,求d;
(3)S5=24,求a2+a4

分析 (1)由已知结合等差数列的前n项和求得n,再由等差数列的通项公式求得a12
(2)由已知结合等差数列的前n项和求得n,再由等差数列的通项公式求得d;
(3)由等差数列的前n项和求得a3,再由等差数列的性质求a2+a4

解答 解:(1)在等差数列{an}中,由a1=$\frac{3}{2}$,d=-$\frac{1}{2}$,Sn=-15,
得${S}_{n}=\frac{3}{2}n+\frac{n(n-1)}{2}×(-\frac{1}{2})=-15$,解得n=-5(舍)或n=12.
a12=$\frac{3}{2}+11×(-\frac{1}{2})=-4$;
(2)在等差数列{an}中,由a1=1,an=-512,Sn=-1022,
得${S}_{n}=\frac{n({a}_{1}+{a}_{n})}{2}=\frac{n(1-512)}{2}=-1022$,解得n=4.
∴d=$\frac{{a}_{4}-{a}_{1}}{4-1}=\frac{-512-1}{3}=-171$;
(3)在等差数列{an}中,由S5=24,得5a3=24,${a}_{3}=\frac{24}{5}$,
∴a2+a4=2${a}_{3}=2×\frac{24}{5}=\frac{48}{5}$.

点评 本题考查等差数列的通项公式及前n项和,考查了等差数列的性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与y轴交于B1,B2两点,F1为椭圆C的左焦点,且△F1B1B2是边长为2的等边三角形.
(1)求椭圆C的方程;
(2)设直线x=my+1与椭圆C交于P,Q两点,点P关于x轴的对称点为P1(P1与Q不重合),则直线P1Q与x轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知袋中装有大小相同的8个小球,其中5个红球的编号为1,2,3,4,5,3个蓝球的编号为1,2,3,现从袋中任意取出3个小球.
(1)求取出的3个小球中,有小球编号为3的概率;
(2)记X为取出的3个小球中编号的最大值,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.给出下列四个命题:
①幂函数一定是奇函数或偶函数;
②任意两个幂函数图象都有两个以上交点;
③如果两个幂函数的图象有三个公共点,那么这两个幂函数相同;
④图象不经过点(-1,1)的幂函数一定不是偶函数
其中为真命题的是④(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求以P(2,-1)为圆心且被直线x-y-1=0截得的弦长为2$\sqrt{2}$的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在(x2+$\frac{1}{\sqrt{x}}$)5展开式中,常数项为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.集合A={1,2,3,4},B={x∈R|x≤3},则A∩B=(  )
A.{1,2,3,4}B.{1,2,3}C.{2,3}D.{1,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,角A,B,C所对的边分别为a,b,c,给出下列结论:
①A>B>C,则sinA>sinB>sinC;
②必存在A,B,C,使tanAtanBtanC<tanA+tanB+tanC成立;
③若sin2A+sin2B>sin2C,则△ABC是钝角三角形;
④若$\frac{a}{{cos\frac{A}{2}}}$=$\frac{b}{{cos\frac{B}{2}}}$=$\frac{c}{{cos\frac{C}{2}}}$,则△ABC是等边三角形.
其中正确的命题的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,矩形ORTM内放置6个边长均为1的小正方形,其中A,B,C,D在矩形的边上,且E为AD的中点,则$(\overrightarrow{AE}-\overrightarrow{BC})•\overrightarrow{BD}$=-6.

查看答案和解析>>

同步练习册答案