精英家教网 > 高中数学 > 题目详情
对于一个三角形,它的三条高线总相交于-点,而对于一个四面体,它的四条高线是否总相交于一点呢?若不总相交于一点,则怎样的四面体其四条高线才相交于一点呢?这是一个美丽而非凡的问题,请读者进行研究拓展.
考点:类比推理,进行简单的合情推理,棱锥的结构特征
专题:探究型,推理和证明
分析:对棱垂直的四面体的四条高线相交于一点,反过来,若一个四面体,若它的四条高线相交于一点,则该四面体一定是对棱垂直的四面体.
解答: 解:对棱垂直的四面体的四条高线相交于一点,反过来,若一个四面体,若它的四条高线相交于一点,则该四面体一定是对棱垂直的四面体.
点评:本题主要考查类比推理的知识点,解答本题的关键是由平面图形的性质类比猜想空间几何体的性质.类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,底面ABCD是边长为a的正方形,侧面SAD为正三角形,且垂直于底面ABCD.
(1)求四棱锥S-ABCD的体积;
(2)在边CD上是否存在一点E,使得SB⊥AE?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c,d均为自然数,且a5=b4,c3=d2,c-a=19,求d-b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知焦点在x轴上,中心在坐标原点的椭圆C的离心率为
4
5
,且过点(
10
2
3
,1)
(1)求椭圆C的方程;
(2)直线l切圆M:x2+y2=R2(其中3<R<5)于B点,且与椭圆C有且只有一个交点A,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱柱ABCD=A1B1C1D1中,侧棱AA1⊥底面ABCD,DC=DD1=2AD=2AB=2,AD⊥DC,AB∥DC.
(1)求四棱柱ABCD-A1B1C1D1的体积;    
(2)求证:D1C⊥AC1
(3)设F是BC上一点,试确定F的位置,使D1F∥平面A1BD,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=|x|.
(1)作出函数图象
(2)判断函数的奇偶性.
(3)若x∈[-2,1],求函数的最小值与最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差d≠0,首项a1=3,且a1、a4、a13成等比数列,设数列{an}的前n项和为Sn(n∈N+).
(1)求an和Sn
(2)若bn=
an(n≤4且n∈N+)
1
Sn
(n≥5且n∈N+)
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD所在平面与正方形ABEF所在平面构成45°的二面角,则异面直线
AC与BF所成角的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知边长为a的菱形ABCD中,∠BAD=60°,将此菱形沿对角线BD折成120°角,则A,C两点间的距离是
 

查看答案和解析>>

同步练习册答案