精英家教网 > 高中数学 > 题目详情
已知正数数列{an}的前n项和为Sn,且对于任意的n∈N*,有Sn=
1
4
(an+1)2
(1)求{an}的通项公式;
(2)设bn=
1
anan+1
,记{bn}的前n项和Tn,证明Tn
1
3
考点:数列的求和
专题:综合题,等差数列与等比数列
分析:(1)令n=1求出首项,然后根据4an=4Sn-4Sn-1进行化简得an-an-1=2,从而得到数列{an}是等差数列,直接求出通项公式即可;
(2)利用裂项法求出前n项和Tn,即可证明结论.
解答: (1)解:∵4S1=4a1=(a1+1)2
∴a1=1.当n≥2时,4an=4Sn-4Sn-1=(an+1)2-(an-1+1)2
∴2(an+an-1)=an2-an-12
又{an}各项均为正数,
∴an-an-1=2.
∴数列{an}是等差数列,
∴an=2n-1;
(2)证明:bn=
1
anan+1
=
1
2
1
2n-1
-
1
2n+1
),
∴Tn=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)=
1
2
(1-
1
2n+1
)=
n
2n+1
=
1
2+
1
n
1
3
点评:本题主要考查了数列的递推关系,考查等差数列的性质及其应用,第二问难度有些大,利用裂项法进行求和,这是数列求和常用的方法,此题是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三棱锥P-ABC的所有顶点都在球O的球面上,AB=5,AC=3,BC=4,PB为球O的直径,PB=10,则这个三棱锥的体积为(  )
A、30
3
B、15
3
C、10
3
D、5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

求不等式a(x-1)(x+a)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx+
a
x-1
在(0,
1
e
)内有极值.
(1)求实数a的取值范围;
(2)若m,n分别为f(x)的极大值和极小值,记S=m-n,求S的取值范围.(注:e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}和等比数列{bn}中,a1=1,b1=2,bn>0(n∈N*),且b1,a2,b2成等差数列,a2,b2,a3+2成等比数列
(1)求数列{an}、{bn}的通项公式
(2)求(b1-a1)+(b2+a2)+(b3-a3)+…+[bn+(-1)nan].

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是公比q≠1的等比数列,Sn为其前n项和,若S3=-6,a3是a4与a5的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2n+an(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:x2+y2-2x-4y-13=0,C2:x2+y2-2ax-6y+a2+1=0(其中a>0)相外切,且直线l:(m+1)x+y-7x-7=0与C2相切.求:
(1)圆C2的标准方程;
(2)求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

动圆与直线x=-2相切,且过椭圆
x2
9
+
y2
5
=1的右焦点F.
(1)求动圆圆心C的轨迹方程;
(2)过点F且斜率为1的直线l交圆心C的轨迹于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-ax2+(a2-1)x+b(a,b∈R).
(Ⅰ)若x=1为f(x)的极值点,求a的值;
(Ⅱ)若f(x)的图象在点(1,f(1))处的切线方程为x+y-3=0,求f(x)在[-2,1]上的最大值和最小值.

查看答案和解析>>

同步练习册答案