精英家教网 > 高中数学 > 题目详情
求不等式a(x-1)(x+a)>0的解集.
考点:一元二次不等式的解法
专题:不等式的解法及应用
分析:需要分类讨论,然后得到不等式的解集.
解答: 解:不等式a(x-1)(x+a)>0,
当a>0时,解集为(-∞,-a)∪(1,+∞),
当a=0时,0(x-1)(x+0)=0,所以解集∅,
当a=-1时,-(x-1)(x-1)=-(x-1)2<0,所以解集∅,
当-1<a<0时,解集为(-a,1),
当a<-1时,解集为(1,-a)
点评:本题主要考查了不等式的解集的求法,如何分类是关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在(0,+∞)上的函数f(x)满足对任意的x1,x2∈(0,+∞)(x1≠x2),有(x2-x1)(f(x2)-f(x1))>0,则满足f(2x-1)<f(
1
3
)的x的取值范围是(  )
A、(
1
3
2
3
B、[
1
3
2
3
C、(
1
2
2
3
D、[
1
2
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈R,函数f(x)=lnx-ax.
(1)若a=2,求曲线y=f(x)在点P(1,-2)处的切线方程;
(2)求函数f(x)的单调区间;
(3)当a>0时,求函数f(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知⊙O是四边形ABCD的外接圆,AD=BC,E是AB延长线上一点,且BE×DC=AD×BC.
(Ⅰ)证明:AB∥CD;
(Ⅱ)求∠OCE的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a、b、c分别是角A、B、C所对的边长,若(a+b+c)(sinA+sinB-sinC)=3asinB,求C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+3bx2+3cx的两个极值点为x1,x2,x1∈[-1,0],x2∈[1,2].证明:0≤f(x1)≤
7
2
,-10≤f(x2)≤-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax2+3x在点(1,f(1))处的切线平行于直线y=6x+3.
(Ⅰ)求实数a的值;
(Ⅱ)若方程f(x)=6x+c有三个不相等的实数根,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正数数列{an}的前n项和为Sn,且对于任意的n∈N*,有Sn=
1
4
(an+1)2
(1)求{an}的通项公式;
(2)设bn=
1
anan+1
,记{bn}的前n项和Tn,证明Tn
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(2x+
π
6
).
(1)求f(x)的振幅和最小正周期;
(2)求当x∈[0,
π
2
]时,函数f(x)的值域;
(3)当x∈[-π,π]时,求f(x)的单调递减区间.

查看答案和解析>>

同步练习册答案