精英家教网 > 高中数学 > 题目详情
10.判断此函数是否为周期函数.
f(x)=$\left\{\begin{array}{l}{1,x∈有理数}\\{0,x∈无理数}\end{array}\right.$.

分析 根据f(x)=$\left\{\begin{array}{l}{1,x∈有理数}\\{0,x∈无理数}\end{array}\right.$,易得对于任意的有理数T,都有f(x+T)=f(x),即函数是周期为任意非0有理数的周期函数.

解答 解:∵f(x)=$\left\{\begin{array}{l}{1,x∈有理数}\\{0,x∈无理数}\end{array}\right.$.
对于任意的有理数T,当x为有理数时,x+T必为有理数,此时f(x+T)=f(x)=1;
当x为无理数时,x+T必为无理数,此时f(x+T)=f(x)=0;
即函数是周期为任意非0有理数的周期函数.

点评 本题考查的知识点是函数的周期性,熟练掌握并真正理解周期函数的概念是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.数列Sn=1+$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+…+$\frac{1}{{2}^{n-1}}$,则S100=2-($\frac{1}{2}$)99

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.△ABC中,角A,B,C对边分别为a,b,c,若$\overrightarrow m$=(2b-c,cosC),$\overrightarrow n$=(a,cosA),且$\overrightarrow m$∥$\overrightarrow n$.
(1)求角A的值;    
(2)若a=$\sqrt{7}$,b+c=4,求S△ABC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设a=$\frac{\sqrt{2}}{2}$(sin17°+cos17°),b=2cos213°-1,c=$\frac{\sqrt{3}}{2}$.则a,b,c的大小关系是(  )
A.c<a<bB.a<c<bC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某科技公司研制成功一种新产品,决定向银行贷款200万元资金用于生产这种产品,签定的合同约定两年到期时一次性还本付息,利息为本金的8%,该产品投放市场后,由于产销对路,使公司在两年到期时除还清贷款的本金和利息外,还盈余72万元;若该公司在生产期间每年比上一年资金增长的百分数相同,试求这个百分数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.关于x的不等式|sinx|+$\sqrt{3}$|cosx|<$\sqrt{3}$的解集为(kπ+$\frac{π}{3}$,kπ+$\frac{2π}{3}$),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.下列四个命题:①“等边三角形的三个内角都是60°”的逆命题;②“全等三角形的面积相等”的否命题;③“若k>0,则方程x2+3x-k=0有实根”的逆否命题;④参数方程$\left\{\begin{array}{l}x=t+\frac{1}{t}\\ y=t-\frac{1}{t}\end{array}\right.$表示的曲线是双曲线.其中真命题的是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2sinxcosx-2sin2x
(1)求函数f(x)的最小正周期;
(2)设△△ABC的内角A、B、C所对的边记作a、b、c,且满足f(A)=0,c=1,b=$\sqrt{2}$,求△△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若命题p:?x>3,x3-27>0,则?p是(  )
A.?x≤3,x3-27≤0B.?x>3,x3-27≤0C.?x>3,x3-27≤0D.?x≤3,x3-27≤0

查看答案和解析>>

同步练习册答案