精英家教网 > 高中数学 > 题目详情
17.设α,β是两个不同的平面,直线l满足l?β,以下命题中错误的命题是(  )
A.若l∥α,α⊥β,则l⊥βB.若l∥α,α∥β,则l∥βC.若l⊥α,α∥β,则l⊥βD.若l⊥α,α⊥β,则l∥β

分析 对4个命题分别进行判断,即可得出结论.

解答 解:对于A,若l∥α,α⊥β,则l⊥β或者l∥β或者l与β相交,所以A错误.
对于B,若l∥α,α∥β,直线l满足l?β,则l∥β,所以B正确
对于C,根据线面垂直的定义可得:若l⊥α,α∥β,则l⊥β是正确的,所以C正确.
对于D,若β⊥α,l⊥α,直线l满足l?β,则l∥β,所以D正确.
故选A.

点评 解决此类问题的关键是熟练掌握空间中直线与平面的位置关系(平行关系与垂直关系),即掌握判断其位置关系的判断定理与性质定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.一几何体由一个四棱锥和一个球组成,四棱锥的顶点都在球上,几何体的三视图如图所示,其中正视图和侧视图完全相同,球的表面积是36π,四棱锥的体积为(  )
A.18B.9C.9$\sqrt{2}$D.18$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足an+2-an=d(d∈R,且d≠0),n∈N*,a1=2,a2=2,且a1,a3,a7成等比数列.
(Ⅰ)求d的值及数列{an}的通项公式;
(Ⅱ)设bn=$\frac{(n+1)^{2}}{{a}_{n}•{a}_{n+1}}$,cn=(-1)n•bn,求数列{cn}的前2n项和S2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}x=1-\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=6cosθ.
(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)若点P的直角坐标为(1,0),曲线C与直线l交于A,B两点,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若向量$\overrightarrow a$与$\overrightarrow b$夹角为$\frac{π}{3}$,$|\overrightarrow b|=4$,$(\overrightarrow a+2\overrightarrow b)(\overrightarrow a-3\overrightarrow b)=-72$,则$|\overrightarrow a|$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设全集U=R,集合A={x|x2-x-2>0},B={x|x2-3x-10<0},求∁UA,∁UB,A∩B,∁UA∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex,g(x)=ax+b,(a,b∈R)
(1)讨论函数y=f(x)+g(x)的单调区间;
(2)如果$0≤a≤\frac{1}{2},b=1$,求证:当x≥0时,$\frac{1}{f(x)}+\frac{x}{g(x)}≥1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,利用随机模拟的方法可以估计图中由曲线$y=\frac{x^2}{2}$与两直线x=2及y=0所围成的阴影部分的面积S:
①先产生两组0~1的增均匀随机数,a=rand (  ),b=rand (  );
②产生N个点(x,y),并统计满足条件$y<\frac{x^2}{2}$的点(x,y)的个数N1,已知某同学用计算器做模拟试验结果,当N=1000时,N1=332,则据此可估计S的值为1.328.(保留小数点后三位)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=p+qsin3x的最大值与最小值分别为3和-1,求函数g(x)=(p-q)cos3x的最大值与最小值.

查看答案和解析>>

同步练习册答案