分析 根据题目所给出的五角形数的前几项,发现该数列的特点是,从第二项起,每一个数与前一个数的差构成了一个等差数列,由此可得结论.
解答 解:a2-a1=5-1=4,
a3-a2=12-5=7,
a4-a3=22-12=10,…,
由此可知数列{an+1-an}构成以4为首项,以3为公差的等差数列.
所以an-an-1=3(n-1)+1=3n-2(n≥2)
迭加得:an-a1=4+7+10+…+3n-2,
故an=1+4+7+10+…+3n-2=$\frac{3{n}^{2}-n}{2}$,
故答案为:3n-2,$\frac{3{n}^{2}-n}{2}$
点评 本题考查了等差数列的判断,考查学生分析解决问题的能力,解答此题的关键是能够由数列的前几项分析出数列的特点,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com