精英家教网 > 高中数学 > 题目详情
3.若函数f(x)=$\left\{\begin{array}{l}{-2x+1,x<0}\\{g(x),x>0}\end{array}\right.$是奇函数,则f-1(x)=$\left\{\begin{array}{l}{\frac{1-x}{2},x>1}\\{-\frac{x+1}{2},x<-1}\end{array}\right.$.

分析 由奇函数的性质求出f(x)=$\left\{\begin{array}{l}{-2x+1,x<0}\\{-2x-1,x>0}\end{array}\right.$,由此能求出f-1(x).

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{-2x+1,x<0}\\{g(x),x>0}\end{array}\right.$是奇函数,
∴x>0时,g(x)=-f(-x)=-[-2(-x)+1]=-2x-1,
∴f(x)=$\left\{\begin{array}{l}{-2x+1,x<0}\\{-2x-1,x>0}\end{array}\right.$,
当x<0时,y=f(x)=-2x+1,x=$\frac{1-y}{2}$,∴f-1(x)=$\frac{1-x}{2}$,x>1,
当x>0时,y=f(x)=-2x-1,x=-$\frac{y+1}{2}$,∴f-1(x)=-$\frac{x+1}{2}$,x<-1.
∴f-1(x)=$\left\{\begin{array}{l}{\frac{1-x}{2},x>1}\\{-\frac{x+1}{2},x<-1}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{\frac{1-x}{2},x>1}\\{-\frac{x+1}{2},x<-1}\end{array}\right.$.

点评 本题考查分段函数的反函数的求法,是基础题,解题时要认真审题,注意反函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知不等式组$\left\{\begin{array}{l}3x+4y-10≥0\\ x≤4\\ y≤3\end{array}\right.$表示区域D,过区域D中任意一点P作圆x2+y2=1的两条切线且切点分别为A,B,当∠PAB最小时,cos∠PAB=(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.-$\frac{{\sqrt{3}}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在平面直角坐标系内,以原点O为顶点,x轴非负半轴为始边,任作一角,该角的终边OA落在第一象限的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列命题中,正确的是(  )
A.如果直线l与平面α内无数条直线成异面直线,则l∥α
B.如果直线l与平面α内无数条直线平行,则l∥α
C.如果直线l与平面α内无数条直线成异面直线,则l?α
D.如果一条直线与一个平面平行,则该直线平行于这个平面内的所有直线
E.如果一条直线上有无数个点不在平面内,则这条直线与这个平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求下列函数的值域
(1)y=$\frac{x^2-1}{x^2+1}$;(2)y=$\frac{x^2-x}{x^2-x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若sinα•tanα>0,则$\sqrt{\frac{1-sinα}{1+sinα}}$-$\sqrt{\frac{1+sinα}{1-sinα}}$=-2tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,已知b+c=2a,试推断是否存在p,使$\frac{1+cosB}{sinB}$+$\frac{1+cosC}{sinC}$=p•$\frac{sinA}{1-cosA}$成立?若存在,求p的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在等差数列{an}中,a1=-3,11a5=5a8-12.
(1)求通项公式an
(2)求a2+a5+a8+…+a26
(3)求前n项和Sn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,棱长为1的正方体ABCD-A1B1C1D1中,
(1)求证:AC⊥平面B1D1DB;
(2)求三棱锥B-CD1B1的体积.

查看答案和解析>>

同步练习册答案