分析 由已知得cosα>0,由此利用同角三角函数关系式能求出结果.
解答 解:∵sinα•tanα=$\frac{si{n}^{2}α}{cosα}$>0,∴cosα>0,
∴$\sqrt{\frac{1-sinα}{1+sinα}}$-$\sqrt{\frac{1+sinα}{1-sinα}}$=$\sqrt{\frac{(1-sinα)^{2}}{1-si{n}^{2}α}}$-$\sqrt{\frac{(1+sinα)^{2}}{1-si{n}^{2}α}}$
=$\sqrt{\frac{(1-sinα)^{2}}{co{s}^{2}α}}$-$\sqrt{\frac{(1+sinα)^{2}}{co{s}^{2}α}}$
=$\frac{1-sinα}{cosα}-\frac{1+sinα}{cosα}$
=-2×$\frac{sinα}{cosα}$
=-2tanα.
故答案为:-2tanα.
点评 本题考查三角函数值化简求值,是基础题,解题时要认真审题,注意同角三角函数关系式的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | m≤n | B. | m<n | C. | m≥n | D. | m>n |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com