分析 令kx=lnx,则k=$\frac{lnx}{x}$,记f(x)=$\frac{lnx}{x}$,根据函数的单调性求出k的范围,根据几何概型求出名字条件的概率即可.
解答 解:由题意,令kx=lnx,则k=$\frac{lnx}{x}$,
记f(x)=$\frac{lnx}{x}$,f'(x)=$\frac{1-lnx}{{x}^{2}}$,
f'(x)在(0,e)上为正,在(e,+∞)上为负,
故f(x)在(0,e)递增,在(e,+∞)递减,
f(x)的在最大值是f(e)=$\frac{1}{e}$,
故0≤k<$\frac{1}{e}$,
由$\frac{\frac{1}{e}-0}{1-0}$=$\frac{1}{e}$,
得直线y=kx与函数y=lnx的图象有2个公共点”发生的概率为$\frac{1}{e}$,
故答案为:$\frac{1}{e}$.
点评 本题考查了几何概型问题,考查函数的单调性问题以及转化思想,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{6}$ | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | $\frac{\sqrt{6}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | n<2017 | B. | n≤2017 | C. | n>2017 | D. | n≥2017 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{9}$ | B. | $-\frac{8}{9}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | $-\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({\frac{1}{2},\sqrt{e}})$ | B. | $[{\frac{1}{2},\sqrt{e}})$ | C. | $({\frac{1}{2},\frac{{\sqrt{e}}}{e}}]$ | D. | $({\frac{1}{2},\frac{{\sqrt{e}}}{e}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | a<c<b | C. | b<c<a | D. | b<a<c |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com