精英家教网 > 高中数学 > 题目详情
1.若数列{an}是公差为2的等差数列,数列{bn}满足b1=1,b2=2,且anbn+bn=nbn+1
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设数列{cn}满足cn=$\frac{{a}_{n}+1}{{b}_{n+1}}$,数列{cn}的前n项和为Tn,若不等式(-1)nλ<Tn+$\frac{n}{{2}^{n-1}}$对一切n∈N*,求实数λ的取值范围.

分析 (I)数列{bn}满足b1=1,b2=2,且anbn+bn=nbn+1.可得a1+1=2,解得a1.利用等差数列的通项公式可得an
可得2nbn=nbn+1,化为2bn=bn+1,利用等比数列的通项公式可得bn
(Ⅱ)设数列{cn}满足cn=$\frac{{a}_{n}+1}{{b}_{n+1}}$=$\frac{2n}{{2}^{n}}$=$\frac{n}{{2}^{n-1}}$,利用“错位相减法”可得数列{cn}的前n项和为Tn,再利用数列的单调性与分类讨论即可得出.

解答 解:(I)∵数列{bn}满足b1=1,b2=2,且anbn+bn=nbn+1
∴a1+1=2,解得a1=1.
又数列{an}是公差为2的等差数列,
∴an=1+2(n-1)=2n-1.
∴2nbn=nbn+1,化为2bn=bn+1
∴数列{bn}是等比数列,公比为2.
∴bn=2n-1
(Ⅱ)设数列{cn}满足cn=$\frac{{a}_{n}+1}{{b}_{n+1}}$=$\frac{2n}{{2}^{n}}$=$\frac{n}{{2}^{n-1}}$,
数列{cn}的前n项和为Tn=1+$\frac{2}{2}+\frac{3}{{2}^{2}}$+…+$\frac{n}{{2}^{n-1}}$,
∴$\frac{1}{2}{T}_{n}$=$\frac{1}{2}+\frac{2}{{2}^{2}}$+…+$\frac{n-1}{{2}^{n-1}}$+$\frac{n}{{2}^{n}}$,
∴$\frac{1}{2}{T}_{n}$=1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$-$\frac{n}{{2}^{n}}$=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n}}$=2-$\frac{n+2}{{2}^{n}}$,
∴Tn=4-$\frac{n+2}{{2}^{n-1}}$.
不等式(-1)nλ<Tn+$\frac{n}{{2}^{n-1}}$,化为:(-1)nλ<4-$\frac{2}{{2}^{n-1}}$,
n=2k(k∈N*)时,λ<4-$\frac{2}{{2}^{n-1}}$,∴λ<3.
n=2k-1(k∈N*)时,-λ<4-$\frac{2}{{2}^{n-1}}$,∴λ>-2.
综上可得:实数λ的取值范围是(-2,3).

点评 本题考查了等差数列与等比数列的通项公式与求和公式、数列的单调性、数列递推关系、“错位相减法”,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图所示,在三棱锥P-ABC中,已知PC⊥平面ABC,点C在平面PBA内的射影D在直线PB上.
(1)求证:AB⊥平面PBC;
(2)设AB=BC,直线PA与平面ABC所成的角为45°,求二面角C-PA-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某班主任准备请2016届毕业生做报告,要从甲、乙等8人中选4人发言,要求甲、乙两人至少一人参加,若甲乙同时参加,则他们发言中间需恰隔一人,那么不同的发言顺序共有1080种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.有一个游戏,将标有数字1、2、3、4的四张卡片分别随机发给甲、乙、丙、丁4个人,每人一张,并请这4人在看自己的卡片之前进行预测:甲说:乙或丙拿到标有3的卡片;乙说:甲或丙拿到标有2的卡片;丙说:标有1的卡片在甲手中;丁说:甲拿到标有3的卡片.结果显示:这4人的预测都不正确,那么甲、乙、丙、丁4个人拿到的卡片上的数字依次为4、2、1、3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知α为第四象限角,sinα+cosα=$\frac{1}{5}$,则tanα的值为-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知△ABC的顶点A(-3,0)和顶点B(3,0),顶点C在椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上,则$\frac{5sinC}{sinA+sinB}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}满足${a_{n+1}}=\sqrt{{a_n}^2-2{a_n}+2}+1(n∈{N_+})$,则使不等式a2016>2017成立的所有正整数a1的集合为(  )
A.{a1|a1≥2017,a1∈N+}B.{a1|a1≥2016,a1∈N+}C.{a1|a1≥2015,a1∈N+}D.{a1|a1≥2014,a1∈N+}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在[0,1]上随机取一个数k,则事件“直线y=kx与函数y=lnx的图象有2个公共点”发生的概率为$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题“?x∈R,都有x2≥0”的否定为(  )
A.不存在x0∈R,使得$x_0^2<0$B.?x∈R,都有x2<0
C.?x0∈R,使得$x_0^2≥0$D.?x0∈R,使得$x_0^2<0$

查看答案和解析>>

同步练习册答案